The first thiocarboxylation of styrenes and acrylates with CO was realized by using visible light as a driving force and catalytic iron salts as promoters. A variety of important β-thioacids were obtained in high yields. This multicomponent reaction proceeds in an atom- and redox-economical manner with broad substrate scope under mild reaction conditions. Notably, high regio-, chemo-, and diasteroselectivity are observed. Mechanistic studies indicate that a radical pathway can account for the unusual regioselectivity.
A series of trinuclear and dinuclear Cr(I)− N 2 complexes bearing cyclopentadienyl-phosphine ligands were synthesized and characterized. Further reduction of the Cr(I)−N 2 complexes generated anionic Cr(0)−N 2 complexes, which could react with Me 3 SiCl to afford the first chromium hydrazido complex from N 2 functionalization. These complexes were found to be effective catalysts for the transformation of N 2 into N(SiMe 3 ) 3 .
A selective oxy-difluoroalkylation of allylamines with carbon dioxide (CO) via visible-light photoredox catalysis is reported. These multicomponent reactions are efficient and environmentally friendly to generate a series of important 2-oxazolidinones with functionalized difluoroalkyl groups. The good functional group tolerance, broad substrate scope, easy scalability, mild reaction conditions, and facile functionalization of products provide great potential for application in organic synthesis and pharmaceutical chemistry.
Reported is the first oxy-trifluoromethylation of allylamines with carbon dioxide (CO2 ) using copper catalysis, thus leading to important CF3 -containing 2-oxazolidones. It is also the first time CO2 , a nontoxic and easily available greenhouse gas, has been used to tune the difunctionalization of alkenes from amino- to oxy-trifluoromethylation. Of particular note, this multicomponent reaction is highly chemo-, regio-, and diastereoselective under redox-neutral and mild reaction conditions. Moreover, these reactions feature good functional-group tolerance, broad substrate scope, easy scalability and facile product diversification. The important products could also be formed with either spirocycles or two adjacent tetrasubstituted carbon centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.