A large percentage of power, petroleum, and chemical plants over the world were in operation for a long duration with the corresponding critical components being used beyond the design life of 30 to 40 years. It is generally more cost-effective to refurbish or modernize the degraded equipment or components, rather than to construct a new plant. Therefore, a reliable plant life extension assessment that can evaluate the critical components is needed. The key element in plant life extension is the residual life assessment technology. However, at present, there is still no general consensus among the industry players on the approach to adopt when performing residual life assessment for such a critical damage mechanism as creep. In this article, a three-level residual life assessment methodology is proposed as a general approach for high-temperature components prone to creep. A detailed validation of the selected guidelines and calculation models is also described. Eventually, an application of the three-level methodology to a real industrial case study is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.