In some quantum many particle systems, the fermions could form Cooper pairs by exchanging intermediate bosons. This then drives a superconducting phase transition or a superfluid transition. Such transitions should be theoretically investigated by using proper non-perturbative methods. Here we take the neutron superfluid transition as an example and study the Cooper pairing of neutrons mediated by neutral $\pi$-mesons in the low density region of a neutron matter. We perform a non-perturbative analysis of the neutron-meson coupling and compute the pairing gap $\Delta_{s}$, the critical density $\rho_{c}$, and the critical temperature $T_c$ by solving the Dyson-Schwinger equation of the neutron propagator. We first carry out calculations under the widely used bare vertex approximation and then incorporate the contribution of the lowest-order vertex correction. This vertex correction is not negligible even at low densities and its importance is further enhanced as the density increases. The transition critical line on density-temperature plane obtained under the bare vertex approximation is substantially changed after including the vertex correction. These results indicate that the vertex corrections play a significant role and need to be seriously taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.