in Wiley InterScience (www.interscience.wiley.com).In this article a novel circulating-turbulent fluidized bed (C-TFB) featured by high solids holdup and high gross solids circulation has been introduced and tested. The purpose of the new design was to integrate conventional circulating and turbulent fluidized beds into a unique high-density fluidization system for more efficient gas-solid contact and significantly reduced solids backmixing. The hydrodynamic characteristics of the C-TFB were analyzed in terms of differential pressure, solids concentration, particle velocity, and local solids flux distributions. An axial homogeneous flow structure was easily obtained with cross-sectional average solids volume concentrations higher than 0.25 throughout the entire C-TFB. At all measuring positions there was no net downflow of solids and a good gas-solid mixing was observed.
in Wiley InterScience (www.interscience.wiley.com).Transient flow behaviors in a novel circulating-turbulent fluidized bed (C-TFB) were investigated by a multifunctional optical fiber probe, that is capable of simultaneously measuring instantaneous local solids-volume concentration, velocity and flux in gassolid two-phase suspensions. Microflow behavior distinctions between the gas-solid suspensions in a turbulent fluidized bed (TFB), conventional circulating fluidized bed (CFB), the bottom region of high-density circulating fluidized bed (HDCFB), and the newly designed C-TFB were also intensively studied. The experimental results show that particle-particle interactions (collisions) dominate the motion of particles in the C-TFB and TFB, totally different from the interaction mechanism between the gas and solid phases in the conventional CFB and the HDCFB, where the movements of particles are mainly controlled by the gas-particle interactions (drag forces). In addition, turbulence intensity and frequency in the C-TFB are significantly greater than those in the TFB at the same superficial gas velocity. As a result, the circulating-turbulent fluidization is identified as a new flow regime, independent of turbulent fluidization, fast fluidization and dense suspension upflow. The gas-solid flow in the C-TFB has its inherent hydrodynamic characteristics, different from those in TFB, CFB and HDCFB reactors.
Diffusion is an important mass transfer mode of tight sandstone gas. Since nano-pores are extensively developed in the interior of tight sandstone, a considerable body of research indicates that the type of diffusion is mainly molecular diffusion based on Fick's law. However, accurate modeling and understanding the physics of gas transport phenomena in nanoporous media is still a challenge for researchers and traditional investigation (analytical and experimental methods) have many limitations in studying the generic behavior. In this paper, we used Nano-CT to observe the pore structures of samples of the tight sandstone of western of Sichuan. Combined with advanced image processing technology, threedimensional distributions of the nanometer-sized pores were reconstructed and a tight sandstone digital core model was built, as well the pore structure parameters were analyzed quantitatively. Based on the digital core model, the diffusion process of methane molecules from a higher concentration area to a lower concentration area was simulated by a finite volume method. Finally, the reservoir's concentration evolution was visualized and the intrinsic molecular diffusivity tensor which reflects the diffusion capabilities of this rock was calculated. Through comparisons, we found that our calculated result was in good agreement with other empirical results. This study provides a new research method for tight sandstone digital rock physics. It is a foundation for future tight sandstone gas percolation theory and numerical simulation research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.