Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein–protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled.
Many life activities and key functions in organisms are maintained by different types of protein–protein interactions (PPIs). In order to accelerate the discovery of PPIs for different species, many computational methods have been developed. Unfortunately, even though computational methods are constantly evolving, efficient methods for predicting PPIs from protein sequence information have not been found for many years due to limiting factors including both methodology and technology. Inspired by the similarity of biological sequences and languages, developing a biological language processing technology may provide a brand new theoretical perspective and feasible method for the study of biological sequences. In this paper, a pure biological language processing model is proposed for predicting protein–protein interactions only using a protein sequence. The model was constructed based on a feature representation method for biological sequences called bio-to-vector (Bio2Vec) and a convolution neural network (CNN). The Bio2Vec obtains protein sequence features by using a “bio-word” segmentation system and a word representation model used for learning the distributed representation for each “bio-word”. The Bio2Vec supplies a frame that allows researchers to consider the context information and implicit semantic information of a bio sequence. A remarkable improvement in PPIs prediction performance has been observed by using the proposed model compared with state-of-the-art methods. The presentation of this approach marks the start of “bio language processing technology,” which could cause a technological revolution and could be applied to improve the quality of predictions in other problems.
Numerous evidences indicate that Circular RNAs (circRNAs) are widely involved in the occurrence and development of diseases. Identifying the association between circRNAs and diseases plays a crucial role in exploring the pathogenesis of complex diseases and improving the diagnosis and treatment of diseases. However, due to the complex mechanisms between circRNAs and diseases, it is expensive and time-consuming to discover the new circRNA-disease associations by biological experiment. Therefore, there is increasingly urgent need for utilizing the computational methods to predict novel circRNA-disease associations. In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fusing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNAdisease associations. The FastGCN algorithm is then used to objectively extract the highlevel features contained in the fusion descriptor. Finally, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 candidate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.