COVID‐19 has caused a critical health concern and severe economic crisis worldwide. With multiple variants, the epidemic has triggered waves of mass transmission for nearly 3 years. In order to coordinate epidemic control and economic development, it is important to support decision‐making on precautions or prevention measures based on the risk analysis for different countries. This study proposes a national risk analysis model (NRAM) combining Bayesian network (BN) with other methods. The model is built and applied through three steps. (1) The key factors affecting the epidemic spreading are identified to form the nodes of BN. Then, each node can be assigned state values after data collection and analysis. (2) The model (NRAM) will be built through the determination of the structure and parameters of the network based on some integrated methods. (3) The model will be applied to scenario deduction and sensitivity analysis to support decision‐making in the context of COVID‐19. Through the comparison with other models, NRAM shows better performance in the assessment of spreading risk at different countries. Moreover, the model reveals that the higher education level and stricter government measures can achieve better epidemic prevention and control effects. This study provides a new insight into the prevention and control of COVID‐19 at the national level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.