Ang-(1-7) improved liver fibrosis by regulating NLRP3 inflammasome activation induced by Ang II-mediated ROS via redox balance modulation. Antioxid. Redox Signal. 24, 795-812.
Aims: Angiotensin II (AngII), a vasoconstrictive peptide of the renin–angiotensin system (RAS), promotes hepatic fibrogenesis and induces microRNA-21(mir-21) expression. Angiotensin-(1–7) [Ang-(1–7)] is a peptide of the RAS, which attenuates liver fibrosis. Recently, it was reported that the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome participated in liver fibrosis. However, it remains unclear how mir-21 mediates AngII-induced NLRP3 inflammasome activation. We investigate the role of AngII-induced mir-21 in the regulation of NLRP3 inflammasome/IL-1β axis in liver fibrosis.Results: In vivo, circulating mir-21 was upregulated in patients with liver fibrosis and was positively correlated with liver fibrosis and oxidation. Treatment with Ang-(1–7) inhibited mir-21, NLRP3 inflammasome, and liver fibrosis after bile duct ligation (BDL) or AngII infusion. Inhibition of mir-21 suppressed the Smad7/Smad2/3/NOX4, Spry1/ERK/NF-κB pathway, NLRP3 inflammasome, and liver fibrosis induced by AngII infusion. In vitro, AngII upregulated mir-21 expression via targeting Smad7 and Spry1 in primary hepatic stellate cells (HSCs). In contrast, Ang-(1–7) suppressed mir-21 expression and oxidation induced by AngII. Overexpression of mir-21 promoted oxidation, and collagen production enhanced the effect of AngII on NLRP3 inflammasome activation via the Spry1/ERK/NF-κB, Smad7/Smad2/3/NOX4 pathways. However, downregulation of mir-21 exerted the opposite effects.Innovation and Conclusions: Mir-21 mediates AngII-activated NLRP3 inflammasome and resultant HSC activation via targeting Spry1 and Smad7. Ang-(1–7) protected against BDL or AngII infusion-induced hepatic fibrosis and inhibited mir-21 expression. Antioxid. Redox Signal. 27, 1–20.
Aldosterone, with pro-oxidation and pro-autophagy capabilities, plays a key role in liver fibrosis. However, the mechanisms underlying aldosterone-promoted liver sinusoidal endothelial cells (LSECs) defenestration remain unknown. Caveolin 1 (Cav1) displays close links with autophagy and fenestration. Hence, we aim to investigate the role of Cav1-related autophagy in LSECs defenestration. We found the increase of aldosterone/MR (mineralocorticoid receptor) level, oxidation, autophagy, and defenestration in LSECs in the human fibrotic liver, BDL or hyperaldosteronism models; while antagonizing aldosterone or inhibiting autophagy relieved LSECs defenestration in BDL-induced fibrosis or hyperaldosteronism models. In vitro, fenestrae of primary LSECs gradually shrank, along with the down-regulation of the NO-dependent pathway and the augment of the AMPK-dependent autophagy; these effects were aggravated by rapamycin (an autophagy activator) or aldosterone treatment. Additionally, aldosterone increased oxidation mediated by Cav1, reduced ATP generation, and subsequently induced the AMPK-dependent autophagy, leading to the down-regulation of the NO-dependent pathway and LSECs defenestration. These effects were reversed by MR antagonist spironolactone, antioxidants or autophagy inhibitors. Besides, aldosterone enhanced the co-immunoprecipitation of Cav1 with p62 and ubiquitin, and induced Cav1 co-immunofluorescence staining with LC3, ubiquitin, and F-actin in the perinuclear area of LSECs. Furthermore, aldosterone treatment increased the membrane protein level of Cav1, whereas decrease the cytoplasmic protein level of Cav1, indicating that aldosterone induced Cav1-related selective autophagy and F-actin remodeling to promote defenestration. Consequently, Cav1-related selective autophagy initiated by aldosterone-induced oxidation promotes LSECs defenestration via activating the AMPK-ULK1 pathway and inhibiting the NO-dependent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.