In this paper, the evolution of vortex configuration for mesoscopic two-gap superconductor is investigated by the time-dependent Ginzburg-Landau theory in the presence of an externally applied field. The vortex configurations of s-wave and d-wave, and the distribution of magnetic field are given when the temperature is between critical temperatures of s-wave and d-wave. In theory, the over-cold and the over-hot field, and the boundary effect on vortex are simulated when the magnetic flux penetrates the superconductor.
The evolution of vortex configuration for superconducting ring is simulated by the Ginzburg-Landau theory in the presence of an externally applied field. The effects of the applied field, the material parameter, the size of ring on the entrance of vortices into the ring and distributing of steady vortices are discussed. Research results show that the higher the applied field, the bigger the material parameter κ is, and the larger the width of the ring, the bigger the number of the vortices which the ring accommodates. The vortices enter into the ring only from the inner boundary when the applied field is low enough, otherwise the vortices enter into the ring first from the outer boundary and then from the inner boundary.
Intermittent superconductivity for mesoscopic thin-film rings is investigated by the phenomenological Ginzburg-Landau theory. Phase diagram for intermittent superconductivity vs. ring dimension is given in the presence of an external applied field. The intermittent superconductivity exists only in the small ring, which is a feature for distingushing superconductive ring from superconductive disk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.