Gamma irradiation-induced decomposition of ciprofloxacin (CIP) was elucidated with different additives, such as CO3 (2-), NO3 (-), NO2 (-), humic acid, methanol, 2-propanol, and tert-butanol. The results show that low initial concentration and acidic condition were favorable for CIP removal during γ irradiation. By contrast, radiolytic decomposition of CIP was inhibited with the addition of anions and organic additives. As a strong carcinogen, Cr(6+) was especially mixed with CIP to produce combined pollution. It is noteworthy that the removal of the mixture of CIP and Cr(6+) presented a synergistic effect; the degradation efficiency of the two pollutants was markedly improved compared to that of the single pollutant during γ irradiation. Based on the results of quantum chemical calculations and LC-MS analysis, we determined seven kinds of degradation intermediates and presented the CIP degradation pathways, which were mainly attributed to the oxidation process of hydroxyl radicals OH· and the direct decomposition of CIP molecules.
Sulfamethoxazole (SMX) was decomposed by using gamma irradiation in the presence of different additives such as NO, NO, Cr(VI), 2-propanol, and tert-butanol. The results demonstrated that NO, NO, 2-propanol, and tert-butanol inhibited SMX radiolytic removal. However, there existed a synergetic effect for radiolytic removal of the mixture containing SMX and Cr(VI). At an absorbed dose of 150 Gy, the removal percentages of SMX and Cr(VI) in the mixture were 73.5 and 84.6%, respectively, which was higher than the removal percentages of 70.6 and 4.1% for the single component of SMX and Cr(VI). This provides us an insight into treating the combined pollution in micro-polluted water. The SMX radiolytic removal followed a pseudo first-order reaction kinetic model, and the rate constant ratios of ·OH, e, and H· towards SMX radiolysis were 10.4:1:2.9. In addition, 24-h bio-inhibitory to the macroalgae of SMX solution during gamma irradiation reached the maximum of 0.85 at an adsorbed dose of 100 Gy, then gradually decreased with the increasing adsorbed dose. Based on LC-MS analysis and quantum chemical calculation, the degradation intermediates were determined and concluded that SMX radiolytic removal was mainly via ·OH radical attack and direct decomposition of SMX molecule by gamma ray.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.