Cooperative games form an important class of problems in game theory, where a key goal is to distribute a value among a set of players who are allowed to cooperate by forming coalitions. An outcome of the game is given by an allocation vector that assigns a value share to each player. A crucial aspect of such games is submodularity (or convexity). Indeed, convex instances of cooperative games exhibit several nice properties, e.g. regarding the existence and computation of allocations realizing some of the most important solution concepts proposed in the literature. For this reason, a relevant question is whether one can give a polynomial-time characterization of submodular instances, for prominent cooperative games that are in general non-convex. In this paper, we focus on a fundamental and widely studied cooperative game, namely the spanning tree game. An efficient recognition of submodular instances of this game was not known so far, and explicitly mentioned as an open question in the literature. We here settle this open problem by giving a polynomial-time characterization of submodular spanning tree games.
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Parity games have witnessed several new quasi-polynomial algorithms since the breakthrough result of Calude et al. (2017). The central combinatorial object underlying these approaches is a universal tree, as identified by Czerwiński et al. (2019). By providing a quasi-polynomial lower bound on the size of universal trees, they have highlighted a barrier that must be overcome by all existing approaches to attain polynomial runtime. This is due to the existence of worst case instances which force these algorithms to explore a large portion of the tree.As an attempt to overcome this barrier, we propose a strategy iteration framework which can be applied on any universal tree. It is at least as fast as its value iteration counterparts, while allowing one to take bigger leaps in the universal tree. Value iteration -asymptotically the fastest known algorithm for parity games -is a repeated application of operators associated with arcs in the game graph to obtain the least fixed point. Our main technical contribution is an efficient method for computing the least fixed point of operators associated with arcs in a strategy subgraph. This is achieved via a careful adaptation of shortest path algorithms to the setting of ordered trees. By plugging in the universal tree of Jurdziński and Lazić (2017), or the Strahler universal tree of Daviaud et al. (2020), we obtain instantiations of the general framework that take time O(mn 2 log n log d) and O(mn 2 log 3 n log d) respectively per iteration.
Cooperative games form an important class of problems in game theory, where a key goal is to distribute a value among a set of players who are allowed to cooperate by forming coalitions. An outcome of the game is given by an allocation vector that assigns a value share to each player. A crucial aspect of such games is submodularity (or convexity). Indeed, convex instances of cooperative games exhibit several nice properties, e.g. regarding the existence and computation of allocations realizing some of the most important solution concepts proposed in the literature. For this reason, a relevant question is whether one can give a polynomial-time characterization of submodular instances, for prominent cooperative games that are in general non-convex. In this paper, we focus on a fundamental and widely studied cooperative game, namely the spanning tree game. An efficient recognition of submodular instances of this game was not known so far, and explicitly mentioned as an open question in the literature. We here settle this open problem by giving a polynomial-time characterization of submodular spanning tree games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.