One of the central challenges in realizing multiferroics-based magnetoelectric memories is to switch perpendicular magnetic anisotropy (PMA) with a control voltage. In this study, we demonstrate electrical flipping of magnetization between the out-of-plane and the in-plane directions in (Co/Pt)/(011) Pb(MgNb)O-PbTiO multiferroic heterostructures through a voltage-controllable spin reorientation transition (SRT). The SRT onset temperature can be dramatically suppressed at least 200 K by applying an electric field, accompanied by a giant electric-field-induced effective magnetic anisotropy field (ΔH) up to 1100 Oe at 100 K. In comparison with conventional strain-mediated magnetoelastic coupling that provides a ΔH of only 110 Oe, that enormous effective field is mainly related to the interface effect of electric field modification of spin-orbit coupling from Co/Pt interfacial hybridization via strain. Moreover, electric field control of SRT is also achieved at room temperature, resulting in a ΔH of nearly 550 Oe. In addition, ferroelastically nonvolatile switching of PMA has been demonstrated in this system. E-field control of PMA and SRT in multiferroic heterostructures not only provides a platform to study strain effect and interfacial effect on magnetic anisotropy of the ultrathin ferromagnetic films but also enables the realization of power efficient PMA magnetoelectric and spintronic devices.
The pandemic due to the outbreak of 2019 coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised significant public health concerns. Rapid, affordable, and accurate diagnostic testing not only paves the way for the effective treatment of diseases, but also plays a crucial role in preventing the spreading of infectious diseases. Herein, a one-pot CRISPR/Cas13a-based visual biosensor was proposed and developed for the rapid and low-cost nucleic acid detection. By combining Cas13a cleavage and Recombinase Polymerase Amplification (RPA) in a one-pot reaction in a disposable tube-in-tube vessel, amplicon contamination could be completely avoided. The RPA reaction is carried out in the inner tube containing two hydrophobic holes at the bottom. After the completion of amplification reaction, the reaction solution enters the outer tube containing pre-stored Cas13a reagent under the action of centrifugation or shaking. Inner and outer tubes are combined to form an independent reaction pot to complete the nucleic acid detection without opening the lid. This newly developed nucleic acid detection method not only meets the need of rapid nucleic acid detection at home without the need for any specialized equipment, but also fulfils the requirement of rapid on-site nucleic acid detection with the aid of small automated instruments. In this study, CRISPR/Cas13a and CRISPR/Cas12a were used to verify the reliability of the developed one-pot nucleic acid detection method. The performance of the system was verified by detecting the DNA virus, i.e., African swine fever virus (ASFV) and the RNA virus, i.e., SARS-Cov-2. The results indicate that the proposed method possesses a limit of detection of 3 copy/μL. The negative and positive test results are consistent with the results of real-time fluorescence quantitative polymerase chain reaction (PCR), but the time required is shorter and the cost is lower. Thus, this study makes this method available in resource-limited areas for the purpose of large-scale screening and in case of epidemic outbreak.
The high demand for flexible spintronics based on multiferroic heterostructures makes growing high‐quality flexible, functional oxides urgently, in which needs to be deposited on lattice‐matched substrates. In this paper, ultraflexible and malleable iron (Fe)/BaTiO3 (BTO) multiferroic heterostructures are demonstrated, showing a perfect crystallinity and hetero‐epitaxial growth. In terms of performance, they indicate good multiferroic properties and excellent bending tunability, as well as obvious magnetoelectric (ME) coupling effect. During the phase transformation from the rhombohedral phase to the orthorhombic phase of BTO layers in the heating process, a large ME coupling coefficient of 120 Oe °C−1 along the out‐of‐plane direction is obtained. This value keeps consistent in the phase‐field simulation of magnetic domain evolution, in which the biaxial compressive strain induced‐magnetoelastic anisotropy facilitates the magnetic easy axis of Fe layers to the [110] or [–1–10] direction. Besides, ultraflexible Fe/BTO heterostructures are found to have a 690 Oe ferromagnetic resonance (FMR) field shift along the out‐of‐plane direction under the flexible tuning (R = 5 mm). This work should pave a way toward flexible spintronic and functional devices with fast speed, portability, and low energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.