Research on multisensory interactions has shown that the perceived timing of a visual event can be captured by a temporally proximal sound. This effect has been termed 'temporal ventriloquism effect.' Using the Ternus display, we systematically investigated how auditory configurations modulate the visual apparent-motion percepts. The Ternus display involves a multielement stimulus that can induce either of two different percepts of apparent motion: 'element motion' or 'group motion'. We found that two sounds presented in temporal proximity to, or synchronously with, the two visual frames, respectively, can shift the transitional threshold for visual apparent motion (Experiments 1 and 3). However, such effects were not evident with single-sound configurations (Experiment 2). A further experiment (Experiment 4) provided evidence that time interval information is an important factor for crossmodal interaction of audiovisual Ternus effect. The auditory interval was perceived as longer than the same physical visual interval in the sub-second range. Furthermore, the perceived audiovisual interval could be predicted by optimal integration of the visual and auditory intervals.
Observers can learn the likely locations of salient distractors in visual search, reducing their potential to cause interference. While there is agreement that this involves positional suppression of the likely distractor location(s), it is contentious at which stage the suppression operates: the search-guiding priority map, which integrates feature-contrast signals (e.g., generated by a red amongst green or a diamond amongst circular items) across dimensions, or the distractor-defining dimension. On the latter, dimension-based account (Sauter et al., 2018), processing of, say, a shape-defined target should be unaffected by distractor suppression when the distractor is defined by color, because in this case only color signals would be suppressed. At odds with this, Wang & Theeuwes (2018a) found slowed processing of the target when it appeared at the likely (vs. an unlikely) distractor location, consistent with priority-map-based suppression. Adopting their paradigm, the present study replicated this target location effect. Crucially, however, changing the paradigm by making the target appear as likely at the frequent as at any of the rare distractor locations and making the distractor/non-distractor color assignment consistent abolished the target location effect, without impacting the reduced interference for distractors at the frequent location. These findings support a flexible locus of spatial distractor suppressionpriority-map-or dimension-based-depending on the prominence of distractor 'cues' provided by the paradigm.
Observers can learn locations where salient distractors appear frequently to reduce potential interference—an effect attributed to better suppression of distractors at frequent locations. But how distractor suppression is implemented in the visual cortex and within the frontoparietal attention networks remains unclear. We used fMRI and a regional distractor-location learning paradigm with two types of distractors defined in either the same (orientation) or a different (color) dimension to the target to investigate this issue. fMRI results showed that BOLD signals in early visual cortex were significantly reduced for distractors (as well as targets) occurring at the frequent versus rare locations, mirroring behavioral patterns. This reduction was more robust with same-dimension distractors. Crucially, behavioral interference was correlated with distractor-evoked visual activity only for same- (but not different-) dimension distractors. Moreover, with different- (but not same-) dimension distractors, a color-processing area within the fusiform gyrus was activated more when a distractor was present in the rare region versus being absent and more with a distractor in the rare versus frequent locations. These results support statistical learning of frequent distractor locations involving regional suppression in early visual cortex and point to differential neural mechanisms of distractor handling with different- versus same-dimension distractors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.