Understanding the change pattern of soil respiration (SR) and its drivers under different bamboo species and land management practices is critical for predicting soil CO2 emission and evaluating the carbon budget of bamboo forest ecosystems. A 24-month field study was performed in subtropical China to monitor SR in experimental plots of local bamboo (Phyllostachys glauca) without fertilization (PG) and commercial bamboo (Phyllostachys praecox) with and without fertilization (PPF and PP, respectively). The SR rate and soil properties were measured on a monthly timescale. Results showed that the SR rate ranged from 0.38 to 8.53 µmol CO2 m−2s−1, peaking in June. The PPF treatment had higher SR rates than the PP and PG treatments for most months; however, there were no significant differences among the treatments. The soil temperature (ST) in the surface layer (0–10 cm) was found to be the predominant factor controlling the temporal change pattern of the monthly SR rate in the PG and PP treatments (i.e., those without fertilization). A bivariate model is used to show that a natural factor—comprised of ST and soil water content (SWC)—explained 44.2% of the variation in the monthly SR rate, whereas biological (i.e., bamboo type) and management (i.e., fertilization) factors had a much smaller impact (less than 0.1% of the variation). The annual mean SR showed a significant positive correlation with soil organic matter (SOM; r = 0.51, P < 0.05), total nitrogen (TN; r = 0.47, P < 0.05), total phosphorus (TP; r = 0.60, P < 0.01), clay content (0.72, P < 0.05) and below-ground biomass (r = 0.60*), which altogether explain 69.0% of the variation in the annual SR. Our results indicate that the fertilization effect was not significant in SR rate for most months among the treatments, but was significant in the annual rate. These results may help to improve policy decisions concerning carbon sequestration and the management of bamboo forests in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.