Searching for new chemically durable and radiation-resistant absorbent materials for actinides and their fission products generated in the nuclear fuel cycle remain highly desirable, for both waste management and contamination remediation. Here we present a rare case of 3D uranyl organic framework material built through polycatenating of three sets of graphene-like layers, which exhibits significant umbellate distortions in the uranyl equatorial planes studied thoroughly by linear transit calculations. This unique structural arrangement leads to high β and γ radiation-resistance and chemical stability in aqueous solutions within a wide pH range from 3 to 12. Being equipped with the highest surface area among all actinide compounds known to date and completely exchangeable [(CH3)2NH2](+) cations in the structure, this material is able to selectively remove cesium from aqueous solutions while retaining the polycatenated framework structure.
Many environmental pollutants inherently exist in their anionic forms and are therefore highly mobile in natural water systems. Cationic framework materials that can capture those pollutants are highly desirable but scarcely reported. Here we present a mesoporous cationic thorium-based MOF (SCU-8) containing channels with a large inner diameter of 2.2 nm and possessing a high surface area of 1360 m2 g−1. The anion-exchange properties of SCU-8 were explored with many anions including small oxo anions like ReO4
− and Cr2O7
2− as well as anionic organic dyes like methyl blue and the persistent organic pollutant, perfluorooctane sulfonate (PFOS). Both fast uptake kinetics and great sorption selectivity toward PFOS are observed. The underlying sorption mechanism was probed using quantum mechanical and molecular dynamics simulations. These computational results reveal that PFOS anions are immobilized in SCU-8 by driving forces including electrostatic interactions, hydrogen bonds, hydrophobic interactions, and van der Waals interactions at different adsorption stages.
Uranium is not only a strategic resource for the nuclear industry but also a global contaminant with high toxicity. Although several strategies have been established for detecting uranyl ions in water, searching for new uranium sensor material with great sensitivity, selectivity, and stability remains a challenge. We introduce here a hydrolytically stable mesoporous terbium(III)-based MOF material compound 1, whose channels are as large as 27 Å × 23 Å and are equipped with abundant exposed Lewis basic sites, the luminescence intensity of which can be efficiently and selectively quenched by uranyl ions. The detection limit in deionized water reaches 0.9 μg/L, far below the maximum contamination standard of 30 μg/L in drinking water defined by the United States Environmental Protection Agency, making compound 1 currently the only MOF material that can achieve this goal. More importantly, this material exhibits great capability in detecting uranyl ions in natural water systems such as lake water and seawater with pH being adjusted to 4, where huge excesses of competing ions are present. The uranyl detection limits in Dushu Lake water and in seawater were calculated to be 14.0 and 3.5 μg/L, respectively. This great detection capability originates from the selective binding of uranyl ions onto the Lewis basic sites of the MOF material, as demonstrated by synchrotron radiation extended X-ray adsorption fine structure, X-ray adsorption near edge structure, and first principles calculations, further leading to an effective energy transfer between the uranyl ions and the MOF skeleton.
Effective detection of chromate anions in aqueous solution is highly desirable because of their high solubility, environmental mobility, carcinogenicity, and bioaccumulation effect. A new strategy for precise detection of chromate anions in the presence of a large excess of other anions, such as Cl, NO, and HCO, in drinking water and natural water systems remains a challenge. Herein, a hydrolytically stable cationic luminescent europium(III)-based metal organic framework (MOF), 1, was successfully synthesized and investigated as a luminescent sensor that exhibits instant and selective luminescence quenching properties toward chromate ions in aqueous solutions. Moreover, 1 can be introduced into high-ionic-strength water system (e.g., seawater) for chromate detection as a consequence of the excellent sensing selectivity. The real environmental application of 1 as a chromate probe is studied in deionized water, lake water, and seawater. The detection limits in these aqueous media are calculated to be 0.56, 2.88, and 1.75 ppb, respectively. All of these values are far below the maximum contamination standard of Cr(VI) in drinking water of 100 ppb, defined by the U.S. Environmental Protection Agency. This excellent chromate sensing capability originates from the fast enrichment of chromate ions in solids of 1 from solutions, followed by efficient energy transfer from the MOF skeleton to the chromate anion, as demonstrated by solution absorption spectroscopy, X-ray diffraction, and chromate uptake kinetics and isotherm investigations. To the best of our knowledge, 1 possesses the lowest chromate detection limit among all reported MOFs up to date and is the only MOF material reported for chromate sensing application under environmentally relevant conditions with high ionic strengths.
Enrichment of uranyl from seawater is crucial for the sustainable development of nuclear energy, but current uranium extraction technology suffers from multiple drawbacks of low sorption efficiency, slow uptake kinetics, or poor extraction selectivity. Herein, we prepared the first example of amidoxime appended metal-organic framework UiO-66-AO by a postsynthetic modification method for rapid and efficient extraction of uranium from seawater. UiO-66-AO can remove 94.8% of uranyl ion from Bohai seawater within 120 min and 99% of uranyl ion from Bohai seawater containing extra 500 ppb uranium within 10 min. The uranyl sorption capacity in a real seawater sample was determined to be 2.68 mg/g. In addition, the recyclability of the UiO-66-AO framework was demonstrated for at least three adsorption/desorption cycles. The origin for the superior sorption capability was further probed by extended X-ray absorption fine structure (EXAFS) analysis on the uranium-sorbed sample, suggesting multiple amidoxime ligands are able to chelate uranyl(VI) ions, forming a hexagonal bipyramid coordination geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.