Listeria monocytogenes is a foodborne bacterial pathogen and the causative agent of an infectious disease, listeriosis. L. monocytogenes is ubiquitous in nature and has the ability to persist in food processing environments for extended periods of time by forming biofilms and resisting industrial sanitization. Human listeriosis outbreaks are commonly linked to contaminated dairy products, ready-to-eat meats, and in recent years, fresh produce such as lettuce and cantaloupes. We identified a putative Crp/Fnr family transcription factor Lmo0753 that is highly specific to human-associated genetic lineages of L. monocytogenes. Lmo0753 possesses two conserved functional domains similar to the major virulence regulator PrfA in L. monocytogenes. To determine if Lmo0753 is involved in environmental persistence-related mechanisms, we compared lmo0753 deletion mutants with respective wild type and complementation mutants of two fully sequenced L. monocytogenes genetic lineage II strains 10403S and EGDe for the relative ability of growth under different nutrient availability and temperatures, soil survival, biofilm productivity and attachment to select fresh produce surfaces including romaine lettuce leaves and cantaloupe rinds. Our results collectively suggested that Lmo0753 plays an important role in L. monocytogenes biofilm production and attachment to fresh produce, which may contribute to the environmental persistence and recent emergence of this pathogen in human listeriosis outbreaks linked to fresh produce.
e Listeria monocytogenes is a food-borne bacterial pathogen and the causative agent of human and animal listeriosis. Among the three major genetic lineages of L. monocytogenes (i.e., LI, LII, and LIII), LI and LII are predominantly associated with food-borne listeriosis outbreaks, whereas LIII is rarely implicated in human infections. In a previous study, we identified a Crp/Fnr family transcription factor gene, lmo0753, that was highly specific to outbreak-associated LI and LII but absent from LIII. Lmo0753 shares two conserved functional domains, including a DNA binding domain, with the well-characterized master virulence regulator PrfA in L. monocytogenes. In this study, we constructed lmo0753 deletion and complementation mutants in two fully sequenced L. monocytogenes LII strains, 10403S and EGDe, and compared the flagellar motility, phospholipase C production, hemolysis, and intracellular growth of the mutants and their respective wild types. Our results suggested that lmo0753 plays a role in hemolytic activity in both EGDe and 10403S. More interestingly, we found that deletion of lmo0753 led to the loss of L-rhamnose utilization in EGDe, but not in 10403S. RNA-seq analysis of EGDe ⌬0753 incubated in phenol red medium containing L-rhamnose as the sole carbon source revealed that 126 (4.5%) and 546 (19.5%) out of 2,798 genes in the EGDe genome were up-and downregulated more than 2-fold, respectively, compared to the wild-type strain. Genes related to biotin biosynthesis, general stress response, and rhamnose metabolism were shown to be differentially regulated. Findings from this study collectively suggested varied functional roles of lmo0753 in different LII L. monocytogenes strain backgrounds associated with human listeriosis outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.