CARD9 is an essential adaptor protein in antifungal innate immunity mediated by C-type lectin receptors. The activity of CARD9 is critically regulated by ubiquitination; however, the deubiquitinases involved in CARD9 regulation remain incompletely understood. In this study, we identified ovarian tumor deubiquitinase 1 (OTUD1) as an essential regulator of CARD9. OTUD1 directly interacted with CARD9 and cleaved polyubiquitin chains from CARD9, leading to the activation of the canonical NF-κB and MAPK pathway. OTUD1 deficiency impaired CARD9-mediated signaling and inhibited the proinflammatory cytokine production following fungal stimulation. Importantly, Otud1–/– mice were more susceptible to fungal infection than wild-type mice in vivo. Collectively, our results identify OTUD1 as an essential regulatory component for the CARD9 signaling pathway and antifungal innate immunity through deubiquitinating CARD9.
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase, which plays an essential role in both innate and adaptive immunity. However, the key molecular mechanisms that regulate SYK activity are poorly understood. Here we identified the E3 ligase TRIM31 as a crucial regulator of SYK activation. We found that TRIM31 interacted with SYK and catalyzed K27-linked polyubiquitination at Lys375 and Lys517 of SYK. This K27-linked polyubiquitination of SYK promoted its plasma membrane translocation and binding with the C-type lectin receptors (CLRs), and also prevented the interaction with the phosphatase SHP-1. Therefore, deficiency of Trim31 in bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) dampened SYK-mediated signaling and inhibited the secretion of proinflammatory cytokines and chemokines against the fungal pathogen Candida albicans infection. Trim31−/− mice were also more sensitive to C. albicans systemic infection than Trim31+/+ mice and exhibited reduced Th1 and Th17 responses. Overall, our study uncovered the pivotal role of TRIM31-mediated K27-linked polyubiquitination on SYK activation and highlighted the significance of TRIM31 in anti-C. albicans immunity.
Candida albicans deploys a variety of mechanisms such as morphological switch and elicitor release to promote virulence. However, the intricate interactions between the fungus and the host remain poorly understood, and a comprehensive inventory of fungal virulence factors has yet to be established. In this study, we identified a C. albicans secretory effector protein Sce1, whose induction and secretion are associated with vagina-simulative conditions and chlamydospore formation. Sequence alignment showed that Sce1 belongs to a Pir family in C. albicans, which is conserved across several fungi and primarily characterized as a β-glucan binding protein in the Saccharomyces cerevisiae. Mechanically, Sce1 is primarily localized to the cell wall in a cleaved form as an alkali-labile β-1,3-glucan binding protein and plays a role in masking β-glucan in acidic environments and chlamydospores, a feature that might underline C. albicans' ability to evade host immunity. Further, a cleaved short form of Sce1 protein could be released into extracellular compartments and presented in bone marrow-derived macrophages infected with chlamydospores. This cleaved short form of Sce1 also demonstrated a unique ability to trigger the caspases-8/9-dependent apoptosis in various host cells. Correspondingly, genetic deletion of SCE1 led to dampened vaginal colonization of C. albicans and diminished fungal virulence during systemic infection. The discovery of Sce1 as a versatile virulence effector that executes at various compartments sheds light on the fungus-host interactions and C. albicans pathogenesis.
In Fig. 5A, the control lane was mistakenly cropped on the far right of the IP:Myc IB: HA blots when the final version of the figure was prepared. The corrected version of Fig. 5 is shown below. The figure legend was correct as published and is shown below for reference.The online version of the article has been corrected and now differs from the print version as originally published.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.