In this work, PCN/Fe2O3/CdS ternary heterojuction photocatalyst was constructed by introducing an appropriate amount of ferric oxide (Fe2O3) and cadmium sulfide (CdS) on porous carbon nitride (PCN), denoted as PCN/Fe2O3/CdS....
The porous g-C3N4 (PCN)/Sn/SnO ternary type-II heterojunction photocatalyst was synthesized by simple heat treatment combined with photodeposition. The results of a series of characterizations displayed that, with an electronic bridge structure, the type-II heterojunction photocatalyst has been successfully prepared. In the presence of PCN/Sn/SnO, RhB was degraded entirely in 40 min, and the conversion and selectivity of benzylamine oxidative reaction reached 99.9% within 6 h. The enhanced photocatalytic activity of PCN/Sn/SnO is attributed to high specific surface area and the metallic Sn0 acting as electron bridges at the interface between SnO and PCN, which can accelerate the speed of photogenerated electrons transmission and inhibit recombination of photogenerated electron-hole pairs. After five cycles of operation, PCN/Sn/SnO maintained high photocatalytic activity. A reasonable photocatalytic reaction pathway was proposed via the free radical quenching test and mechanism analysis.
As an important intermediate, imine is widely used in industrial chemistry. The photocatalytic oxidation of amines to form imines is a green and economical method. But it remains a challenge for the efficient transformation under mild conditions. Herein, a Z-scheme carbon nitride (CM)-Fe2O3 heterojunction photocatalyst was synthesized by in-situ preparation of Fe2O3 nanoparticles on two-dimensional CM nanosheets. The as-prepared catalyst exhibited efficient photocatalysis activity in selective oxidation of benzylamine to N-benzylidene benzylamine. Under ambient air and room temperature, the selectivity and conversion rate both can reach 99.9%, and the corresponding turnover frequency value reaches up to 9.99 mmol g−1 h−1, superior to the most of heterogeneous photocatalysts reported in previous literatures. The excellent catalytic activity of the modified CM material may be due to the enhanced absorption of visible light and the improved photogenerated carrier separation and migration rate, and the Z-scheme mechanism also retains the strong oxidation and reduction ability of the composite material. This work will provide a promising and practical method to promote the photocatalytic conversion of solar-driven organics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.