Acute respiratory distress syndrome (ARDS), characterized by acute hypoxic respiratory dysfunction or failure, is a manifestation of multiple organ failure in the lung, and the most common risk factor is sepsis. We previously showed that blocking α 2 -adrenoceptor (α 2 -AR) could attenuate lung injury induced by endotoxin in rats.α 2A -adrenoceptor (α 2A -AR), a subtype of α 2 -AR plays a key role in inflammatory diseases, but the mechanism remains unknown. Here, we explored the effect of BRL-44408 maleate (BRL), a specific α 2A -AR antagonist, on cecal ligation puncture (CLP)-induced ARDS in rats and the underlying mechanism. Preadministration of BRL-44408 maleate significantly alleviated CLP-induced histological injury, macrophage infiltration, inflammatory response, and wet/dry ratio in lung tissue. However, there was no statistical difference in survival rate between the CLP and CLP+BRL groups. Extracellular regulated protein kinase (ERK1/2), p38MAPK, and p65 were activated in the CLP group, and BRL-44408 maleate inhibited the activation of these signal molecules, c-Jun N-terminal kinase (JNK) and protein kinase A (PKA) showed no changes in activation between these two groups. BRL-44408 maleate decreased lipopolysaccharide (LPS)-induced expression of cytokines in NR8383 rat alveolar macrophages and reduced phosphorylation of ERK1/2, p38MAPK, and p65. JNK and PKA were not influenced by LPS. Together, these findings suggest that antagonism of α 2A -AR improves CLP-induced acute lung injury and involves the downregulation of ERK1/2, p38MAPK, and p65 pathway independent of the activation of JNK and PKA. K E Y W O R D S acute respiratory distress syndrome, BRL-44408 maleate, MAPK and NF-κB, protein kinase A, α 2A -AR 1 | INTRODUCTION Acute respiratory distress syndrome (ARDS), which is characterised by acute hypoxic respiratory dysfunction or failure with bilateral pulmonary infiltration, is a manifestation of multiple organ failure in the lung, often caused by various noncardiac reasons, either direct or indirect pulmonary injury, including severe pneumonia, aspiration of gastric contents, severe trauma, infection, shock, and sepsis (Williams et al., 2017). Because of the improvements in critical care practice, including lung-protective ventilation, timely resuscitation, and antimicrobial administration, restrictive transfusion strategies, the incidence of ARDS has a substantial decline (
Background The aim of this study is to investigate role of Visfatin, one of the pro-inflammatory adipokines, in sepsis-induced intestinal injury and to clarify the potential mechanism. Methods C57BL/6 mice underwent cecal ligation and puncture (CLP) surgery to establish sepsis model in vivo. Intestinal epithelial cells were stimulated with LPS to mimic sepsis-induced intestinal injury in vitro. FK866 (the inhibitor of Visfatin) with or without XMU-MP-1 (the inhibitor of Hippo signaling) was applied for treatment. The expression levels of Visfatin, NF-κB and Hippo signaling pathways-related proteins were detected by western blot or immunohistochemistry. The intestinal cell apoptosis and intestinal injury were investigated by TUNEL staining and H&E staining, respectively. ELISA was used to determine the production of inflammatory cytokines. Results The expression of Visfatin increased in CLP mice. FK866 reduced intestinal pathological injury, inflammatory cytokines production, and intestinal cell apoptosis in sepsis mice. Meanwhile, FK866 affected NF-κB and Hippo signaling pathways. Additionally, the effects of FK866 on inflammatory response, apoptosis, Hippo signaling and NF-κB signaling were partly abolished by XMU-MP-1, the inhibitor of Hippo signaling. In vitro experiments also revealed that FK866 exhibited a protective role against LPS-induced inflammatory response and apoptosis in intestinal cells, as well as regulating NF-κB and Hippo signaling, whereas addition of XMU-MP-1 weakened the protective effects of FK866. Conclusion In short, this study demonstrated that inhibition of Visfatin might alleviate sepsis-induced intestinal injury through Hippo signaling pathway, supporting a further research on Visfatin as a therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.