Optical resolution photoacoustic microscopy (ORPAM) is important for various biomedical applications, such as the study of cellular structures, microcirculation systems, and tumor angiogenesis. However, the lateral resolution of a conventional ORPAM is limited by optical diffraction. In this work, we report a simulation study to achieve subdiffraction-limited super-resolution in ORPAM using microspheres. Laser radiation is focused through a microsphere to generate a photonic nanojet, which provides the possibility to break the diffraction limit in ORPAM by reducing the size of the excitation volume. In our simulations using microspheres, we observed improvement in the lateral resolution up to compared to conventional ORPAM. The method is simple, cost effective, and can provide far-field resolution. This approach may provide new opportunities for many biomedical imaging applications that require finer resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.