The phylogeny of true bugs (Hemiptera: Heteroptera), one of the most diverse insect groups in terms of morphology and ecology, has been the focus of attention for decades with respect to several deep nodes between the suborders of Hemiptera and the infraorders of Heteroptera. Here, we assembled a phylogenomic data set of 53 taxa and 3102 orthologous genes to investigate the phylogeny of Hemiptera-Heteroptera, and both concatenation and coalescent methods were used. A binode-control approach for data filtering was introduced to reduce the incongruence between different genes, which can improve the performance of phylogenetic reconstruction. Both hypotheses (Coleorrhyncha + Heteroptera) and (Coleorrhyncha + Auchenorrhyncha) received support from various analyses, in which the former is more consistent with the morphological evidence. Based on a divergence time estimation performed on genes with a strong phylogenetic signal, the origin of true bugs was dated to 290-268 Ma in the Permian, the time in Earth's history with the highest concentration of atmospheric oxygen. During this time interval, at least 1007 apomorphic amino acids were retained in the common ancestor of the extant true bugs. These molecular apomorphies are located in 553 orthologous genes, which suggests the common ancestor of the extant true bugs may have experienced large-scale evolution at the genome level.
Wing polymorphism is common in a wide variety of insect species. However, few studies have reported on adaptations in the wing polymorphism of insects at molecular level, in particular for males. Thus, the adaptive mechanisms need to be explored. The remarkable variability in wing morphs of insects is well represented in the water striders (Hemiptera: Gerridae). Within this family, Gigantometra gigas (China, 1925), the largest water strider known worldwide, displays macropterous and apterous males. In the present study, we used de novo transcriptome assembly to obtain gene expression information and compared body and leg-component lengths of adult males in different wing morphs. The analyses in both gene expression and phenotype levels were used for exploring the adaptive mechanism in wing polymorphism of G. gigas. After checking, a series of highly expressed structural genes were found in macropterous morphs, which were related to the maintenance of flight muscles and the enhancement of flight capacity, whereas in the apterous morphs, the imaginal morphogenesis protein-Late 2 (Imp-L2), which might inhibit wing development and increase the body size of insects, was still highly expressed in the adult stage. Moreover, body and leg-component lengths were significantly larger in apterous than in macropterous morphs. The larger size of the apterous morphs and the differences in highly expressed genes between the two wing morphs consistently demonstrate the adaptive significance of wing polymorphism in G. gigas. These results shed light on the future loss-of-function research of wing polymorphism in G. gigas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.