Aiming at the problem of detecting insulator strings in aerial images, a detection method of insulator strings based on the InST-Net network is proposed in this paper. First, the ResNet50 network pretrained on the ImageNet dataset is used as the backbone network for insulator string feature extraction. Subsequently, for insulator strings of different imaging sizes in the image, three detection branches are designed based on the design ideas of the existing YOLO model. Finally, an SPP module is adopted to improve the feature extraction capability of each detection branch of the proposed InST-Net network. The experimental results show that the InST-Net network detection accuracy rate reaches 90.63%, which is higher than that of the four classic one-stage target detection networks and the existing insulator string detection network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.