Currently, with the rapid development of deep learning, deep neural networks (DNNs) have been widely applied in various computer vision tasks. However, in the pursuit of performance, advanced DNN models have become more complex, which has led to a large memory footprint and high computation demands. As a result, the models are difficult to apply in real time. To address these issues, model compression has become a focus of research. Furthermore, model compression techniques play an important role in deploying models on edge devices. This study analyzed various model compression methods to assist researchers in reducing device storage space, speeding up model inference, reducing model complexity and training costs, and improving model deployment. Hence, this paper summarized the state-of-the-art techniques for model compression, including model pruning, parameter quantization, low-rank decomposition, knowledge distillation, and lightweight model design. In addition, this paper discusses research challenges and directions for future work.
Recently, handwritten Chinese character recognition has become an important research field in computer vision. With the development of deep learning, convolutional neural networks (CNNs) have demonstrated excellent performance in computer vision. However, CNNs are typically designed manually, which requires extensive experience and may lead to redundant computations. To solve these problems, in this study, the particle swarm optimization approach is incorporated into the design of a CNN for handwritten Chinese character recognition, reducing redundant computations in the network. In this approach, each network architecture is represented by a particle, and the optimal network architecture is determined by continuously updating the particles until a global particle is identified. The experimental validation resulted in a network accuracy of 97.24% with only 1.43 million network parameters. Therefore, it is demonstrated that the proposed particle swarm optimization method can quickly and accurately find the optimal network architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.