The accuracy of NIPT for ChrX and ChrY can be improved substantially by integrating the results of maternal-plasma sequencing with those for maternal-WBC sequencing. The relatively high frequency of maternal mosaicism warrants mandatory WBC testing in both shotgun sequencing- and single-nucleotide polymorphism-based clinical NIPT after the finding of a potential fetal SCA.
Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage.
Detection of chromosome copy number variation (CNV) plays an important role in the diagnosis of patients with unexplained clinical symptoms and for the identification of chromosome disease syndromes in the established fetus. In current clinical practice, karyotyping, in conjunction with array-based methods, is the gold standard for detection of CNV. To increase accessibility and reduce patient costs for diagnostic CNV tests, we speculated that next-generation sequencing methods could provide a similar degree of sensitivity and specificity as commercial arrays. CNV in patient samples was assessed on a medium-density single nucleotide polymorphism array and by low-coverage massively parallel CNV sequencing (CNV-seq), with mate pair sequencing used to confirm selected CNV deletion breakpoints. A total of 10 ng of input DNA was sufficient for accurate CNV-seq diagnosis, although 50 ng was optimal. Validation studies of samples with small CNVs showed that CNV-seq was specific and reproducible, suggesting that CNV-seq may have a potential genome resolution of approximately 0.1 Mb. In a blinded study of 72 samples with known gross and submicroscopic CNVs originally detected by single nucleotide polymorphism array, there was high diagnostic concordance with CNV-seq. We conclude that CNV-seq is a viable alternative to arrays for the diagnosis of chromosome disease syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.