The strength of the ceramic layer formed during ablation of the silicone rubber composite is closely related to its resistance to ablation. Increasing the content of graphitic carbon in the ceramic layer plays a key role in enhancing the strength of ceramic layer. In this study, series of catalytically graphitized mesophase pitch‐modified silicone rubber composites with excellent ablation performance are prepared. And the average linear ablation rate of the composite is reduced to a maximum of 0.046 mm s‐1, which is 44.0% lower than that of the sample without catalyst named 5MP. XRD characterization proves that the addition of transition metal catalysts increases the content of graphitic carbon in the ceramic layers after ablation. The strength of ceramic layer of the 0.13Fe2O3 reached 12.09 MPa, which is 60.3% higher than that of the 5MP. The transition metal catalyst effectively increases the content of graphitic carbon in the ceramic layers, and the strengths of the ceramic layers are significantly improved, thereby greatly improving the ablation performance of the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.