Cellulose nanocrystal (CNC) is a nanoscale colloid with superior potential for coatings, liquid crystal displays, and optoelectronics. However, to date, the presence of hydrophilicity still limits its application. Multifunction via graft copolymerization modification of CNC appears to be breaking into a new direction. In this study, we used the residual hydroxyl groups on the CNC to react with 2-bromoisobu-tyryl bromide, and the initiator was therefore anchored on the CNC surface. Through atom transfer radical polymerization (ATRP), CNC was successfully grafted to azobenzene monomer, i.e., 9-[4-[2-[4-(trifluorometh) phenyl] diazenyl] phenoxy] nonayl acrylate (FAZO). After a series of characterization methods, such as FTIR, NMR and XRD, it was found that the surface water contact angle of the CNC-PFAZO prepared by the modification was as high as 134.4°, and the high hydrophilicity of this material could be maintained for up to one month, even longer.
A dielectric material is a particular type of insulator that does not conduct electricity but gets polarized when subjected to electricity, which is a crucial part of electronics such as cables, capacitors, displays, transformers, etc. Currently, synthesizing a nonpolar dielectric remains challenging. In this study, a method to make a high dielectric and nonpolar fluoropolymer and its nanocomposites based on cellulose nanocrystals (CNCs) by grafting it with nonpolar polymer 2,2,2-trifluoroethyl methacrylate is reported. A high dielectric constant but nonpolar nanocellulose material is obtained for the first time. This material has an anisotropic arrangement of dipoles with a high polarizability effect, thereby displaying excellent dielectric properties (e.g., dielectric constant and loss: 8.59 and 0.017 at 10 kHz) and high stability (dielectric constant at 8.21 at 1 MHz). The dielectric material is miscible as an additive with other commercial fluoropolymer plastic, which demonstrates a high breakage voltage ranging from 4.6 to 9.2 kV/0.1 mm. When it is used as an interfacial layer in electrowetting display devices, it also demonstrated a low voltage driven and fast-response effect. The excellent dielectric performances allow to develop more high-performance dielectrics and electronics such as memories, sensors, actuators, wires, and film capacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.