On‐chip microsupercapacitors (MSC) with facile fabrication procedures, high integration design, and superior performance are desired as an energy storage device for microelectronics. Hence, a novel procedure is proposed to fabricate an asymmetric microsupercapacitor (AMSC), employing interwoven nanowire (NW) network electrodes of poly(3,4‐ethylenedioxythiophene) coated titanium oxynitride (P‐TiON) and vanadium nitride (VN) NW as a cathode and an anode, respectively. The interwoven NWs with a high mass loading offer a sufficient electrochemical reaction area and rapid electron/ion transport pathway, delivering superior energy and power densities. With the LiCl/polyvinyl alcohol electrolyte, the assembled P‐TiON//VN AMSC can achieve a wide voltage window from 0 to 1.8 V with an excellent areal capacitance of 72 mF cm−2, a high areal energy density of 32.4 μWh cm−2 (at 0.9 mW cm−2), an outstanding power density of 45 mW cm−2 (at 21.9 μWh cm−2), and a good cycling performance. Furthermore, the substrate‐free electrodes exhibit outstanding integrability, and the system on one printed circuit board including two AMSCs in series and a LED demonstrates excellent practicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.