Hafnia‐based compounds have considerable potential for use in nanoelectronics due to their compatibility with complementary metal–oxide–semiconductor devices and robust ferroelectricity at nanoscale sizes. However, the unexpected ferroelectricity in this class of compounds often remains elusive due to the polymorphic nature of hafnia, as well as the lack of suitable methods for the characterization of the mixed/complex phases in hafnia thin films. Herein, the preparation of centimeter‐scale, crack‐free, freestanding Hf0.5Zr0.5O2 (HZO) nanomembranes that are well suited for investigating the local crystallographic phases, orientations, and grain boundaries at both the microscopic and mesoscopic scales is reported. Atomic‐level imaging of the plan‐view crystallographic patterns shows that more than 80% of the grains are the ferroelectric orthorhombic phase, and that the mean equivalent diameter of these grains is about 12.1 nm, with values ranging from 4 to 50 nm. Moreover, the ferroelectric orthorhombic phase is stable in substrate‐free HZO membranes, indicating that strain from the substrate is not responsible for maintaining the polar phase. It is also demonstrated that HZO capacitors prepared on flexible substrates are highly uniform, stable, and robust. These freestanding membranes provide a viable platform for the exploration of HZO polymorphic films with complex structures and pave the way to flexible nanoelectronics.
The role and mechanism of collagen type VI alpha 6 (COL6A6) on tumor growth and metastasis in pituitary adenoma (PA) was determined. COL6A6 was downregulated in PA tissues and cell lines, which was negatively associated with the expression of prolyl-4-hydroxylase alpha polypeptide III (P4HA3) in the progression of PA. Overexpression of COL6A6 significantly suppressed tumor growth and metastasis capacity in PA. In addition, P4HA3 worked as the upstream of the PI3K-Akt pathway to alleviate the antitumor activity of COL6A6 on the growth and metastasis of both AtT-20 and HP75 cells. Furthermore, the inhibitory effect of COL6A6 on cell proliferation, migration and invasion, and epithelial-mesenchymal transition (EMT) was reversed by P4HA3 overexpression or activation of the PI3K-Akt pathway induced by IGF-1 addition, which provided a new biomarker for clinical PA treatment.
Von Neumann computers are currently failing to follow Moore’s law and are limited by the von Neumann bottleneck. To enhance computing performance, neuromorphic computing systems that can simulate the function of the human brain are being developed. Artificial synapses are essential electronic devices for neuromorphic architectures, which have the ability to perform signal processing and storage between neighboring artificial neurons. In recent years, electrolyte-gated transistors (EGTs) have been seen as promising devices in imitating synaptic dynamic plasticity and neuromorphic applications. Among the various electronic devices, EGT-based artificial synapses offer the benefits of good stability, ultra-high linearity and repeated cyclic symmetry, and can be constructed from a variety of materials. They also spatially separate “read” and “write” operations. In this article, we provide a review of the recent progress and major trends in the field of electrolyte-gated transistors for neuromorphic applications. We introduce the operation mechanisms of electric-double-layer and the structure of EGT-based artificial synapses. Then, we review different types of channels and electrolyte materials for EGT-based artificial synapses. Finally, we review the potential applications in biological functions.
Background: Long-term morbidity and mortality of patients with STsegment-elevation myocardial infarction (STEMI) after primary percutaneous coronary intervention (PCI) remain substantial. Circulating microRNAs (miRNAs) play an important role in cardiovascular disease development. We aimed to identify circulating miRNAs associated with adverse cardiovascular events after acute myocardial infarction (AMI). Methods: We performed a prospective, nested, case-control study of 932 patients with STEMI who underwent primary PCI. A 3-phase approach was conducted to screen candidate circulating miRNAs in 70 patients who subsequently experienced cardiac death, hospitalization for heart failure, or recurrent AMI (major adverse cardiovascular events [MACE] group) and in 140 patients matched for age, sex, time from symptom onset to blood collection and dual-antiplatelet therapy R ESUM Eto the development of novel pharmaceuticals and interventional therapies, such as the use of reperfusion therapy, primary percutaneous coronary intervention (PCI), antithrombotic therapy, and secondary prevention. 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.