We present a system for fast dense 3D reconstruction with a hand-held camera. Walking around a target object, we shoot sequential images using continuous shooting mode. High-quality camera poses are obtained offline using structure-from-motion (SfM) algorithm with Bundle Adjustment. Multi-view stereo is solved using a new, efficient adaptive multiscale discrete-continuous variational method to generate depth maps with sub-pixel accuracy. Depth maps are then fused into a 3D model using volumetric integration with truncated signed distance function (TSDF).Our system is accurate, efficient and flexible: accurate depth maps are estimated with sub-pixel accuracy in stereo matching; dense models can be achieved within minutes as major algorithms parallelized on multi-core processor and GPU; various tasks can be handled (e.g. reconstruction of objects in both indoor and outdoor environment with different scales) without specific hand-tuning parameters. We evaluate our system quantitatively and qualitatively on Middlebury benchmark and another dataset collected with a smartphone camera.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.