Graphene, the reincarnation of a surface, offers new opportunities in catalytic applications, not only because of its peculiar electronic structure, but also because of the ease of modulating it. A vast number of proposals have been made to support this point, but there has been a lack of a systematic understanding of the different roles of graphene, as many other reviews published have focused on the synthesis and characterization of the various graphene-based catalysts. In this review, we surveyed the vast literature related to various theoretical proposals and experimental realizations of graphene-based catalysts to first classify and then elucidate the different roles played by graphene in solid-state heterogeneous catalysis. Owing to its one-atom thickness and zero bandgap with low density of states around Fermi level, graphene has great potential in catalysis applications. In general, graphene can function as a support for catalysts, a cover to protect catalysts, or the catalytic center itself. Understanding these functions is important in the design of catalysts in terms of how to optimize the electronic structure of the active sites for particular applications, a few case studies of which will be presented for each role.
We explain how the electrical current flow in a molecular junction can modify the vibrational spectrum of the molecule by renormalizing its normal modes of oscillations. This is demonstrated with first-principles self-consistent transport theory, where the current-induced forces are evaluated from the expectation value of the ionic momentum operator. We explore here the case of H 2 sandwiched between two Au electrodes and show that the current produces stiffening of the transverse translational and rotational modes and softening of the stretching modes along the current direction. Such behavior is understood in terms of charge redistribution, potential drop, and elasticity changes as a function of the current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.