Covalent organic frameworks (COFs) possess extraordinary porosity, structural diversity, and good electrochemical performance, and have broad application prospects in the field of energy storage. However, the low conductivity of COFs limits its further development. In this paper, the electrochemical performance of triphenylamine-based COFs (TPA-COFs) was improved by compounding with highly conductive polyaniline (PANI) using solvothermal synthesis process. The highly conductive polyaniline fibers can act as conductive path in the composite to accelerate the charge transfer rate of TPA-COFs. The π-π interaction between TPA-COFs and PANI effectively decreases the agglomeration degree of PANI. The good dispersion of composite results in that the specific surface area of TPA-COFs/PANI-20 is high as 1233.9 m2 g−1, which provides rich diffusion channels for electrolyte ions. Moreover, the strong π-π structure in the composites ensures the stability of the material skeleton. Thus, TPA-COFs/PANI composite exhibits excellent rate characteristics and cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.