Chip-scale narrow-linewidth lasers have rich applications in sensing, communication, spectroscopy and light detection and ranging (LiDAR). Self-injection locking is one of the most efficient techniques to reduce linewidth significantly. By locking a laser to an external cavity, some amounts of light reflect back into the laser for mode competition, leading to a significant reduction of the lasing linewidth. In this work, we demonstrated a hybrid-integrated laser with a microring resonator (MRR) butt-coupled to a distributed feedback (DFB) laser. The radius of the MMR is designed to be 442.3 μm, corresponding to a free spectral range (FSR) of about 50 GHz. And the MMR has a quality factor (Q factor) of 3×10 6 , fabricated in an ultralow loss silicon nitride (Si3N4) waveguide platform. In this way, the frequency noise has been reduced to 12.565 Hz²/Hz at the 10 MHz offset frequency. Finally, 40 Hz intrinsic linewidth and 91.2 kHz integral linewidth are achieved, characterized by a delayed self-heterodyne interferometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.