Abstract:The sparse distribution of targets in monitored areas is an important prior for device-free localization (DFL) with radio tomography networks. In this article, our goal is to develop an enhanced sparse representation-based DFL method that takes the full potential of sparsity for location reconstruction. An expanded sensing matrix spanning the concatenation of a sampling matrix and a unit error-correcting base is proposed for modelling the measurement process. The sampling matrix can either be composed of the ellipse model from calibrated networks or the received signal strength (RSS) fingerprint-based model induced by training samples with one person at predefined locations. Thus, the sparsity of targets is enhanced under the expanded sensing matrix and the 1 -minimization-based approximations are derived for the recovery of locations. Experimental studies in an open outdoor scenario, in a line-of-sight (LOS) indoor scenario, and in a non-line-of-sight (NLOS) indoor scenario, are conducted to verify the efficacy of the proposed method.
This article proposes a lightweight biometric sensing system using ubiquitous narrowband radio frequency (RF) links for path-dependent walker classification. The fluctuated received signal strength (RSS) sequence generated by human motion is used for feature representation. To capture the most discriminative characteristics of individuals, a three-layer RF sensing network is organized for building multiple sampling links at the most common heights of upper limbs, thighs, and lower legs. The optimal parameters of sensing configuration, such as the height of link location and number of fused links, are investigated to improve sensory data distinctions among subjects, and the experimental results suggest that the synergistic sensing by using multiple links can contribute a better performance. This is the new consideration of using RF links in building a biometric sensing system. In addition, two types of classification methods involving vector quantization (VQ) and hidden Markov models (HMMs) are developed and compared for closed-set walker recognition and verification. Experimental studies in indoor line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios are conducted to validate the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.