Precise solar radiation forecasting is of great importance for solar energy utilization and its integration into the grid, but because of the daily solar radiation’s intrinsic non-stationary and nonlinearity, which is influenced by a lot of elements, single predicting models may have difficulty obtaining results with high accuracy. Therefore, this paper innovatively puts forward an original hybrid model that predicts solar radiation through extreme learning machine (ELM) optimized by the bat algorithm (BA) based on wavelet transform (WT) and principal component analysis (PCA). First, choose the meteorological variables on the basis of Pearson coefficient test, and WT will decompose historical solar radiation into two time series, which are de-noised signal and noise signal. In the approximate series, the lag phase of historical radiation is obtained by partial autocorrelation function (PACF). After that, use PCA to reduce the dimensions of the influencing factors, including meteorological variables and historical radiation. Finally, ELM is established to predict daily solar radiation, whose input weight and deviation thresholds gained optimization by BA, thus it is called BA-ELM henceforth. In view of the four distinct solar radiation series obtained by NASA, the empirical simulation explained the hybrid model’s validity and effectiveness compared to other primary methods.
Carbon price forecasting is significant to both policy makers and market participants. However, since the complex characteristics of carbon prices are affected by many factors, it may be hard for a single prediction model to obtain high-precision results. As a consequence, a new hybrid model based on multi-resolution singular value decomposition (MRSVD) and the extreme learning machine (ELM) optimized by moth–flame optimization (MFO) is proposed for carbon price prediction. First, through the augmented Dickey–Fuller test (ADF), cointegration test and Granger causality test, the external factors of the carbon price, which includes energy and economic factors, are selected in turn. To select the internal factors of the carbon price, the carbon price series are decomposed by MRSVD, and the lags are determined by partial autocorrelation function (PACF). MFO is then used for the optimization of ELM parameters, and external and internal factors are input to the MFO-ELM. Finally, to test the capability and effectiveness of the proposed model, MRSVD-MFO-ELM and its comparison models are used for carbon price forecast in the European Union (EU) and China, respectively. The results show that the performance of the model is significantly better than other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.