Contact calculation is of great importance in predicting the material removal (MR) of flexible grinding process (FGP). The contact is mostly considered approximately constant in the existing MR models, while the situations that contact varies a lot after FGP are ignored. Therefore, a novel model is proposed in this paper to take those situations into consideration. Firstly, the nonconstant-contact situation is introduced. Then an equivalent method is developed to convert the nonconstant-contact grinding process into the accumulation of several quasi-constant-contact grinding processes. Based on the equivalent method, a MR model is established, and the procedure to obtain the model parameters by the finite element analysis (FEA) is introduced. In the end, the equivalent method and the MR model are tested by a series experiments of different process parameters. Results show that the proposed MR model can predict the material removal effectively for the nonconstant-contact situations.
Contact calculation is of great importance in predicting the material removal (MR) of flexible grinding process (FGP). The contact is mostly considered approximately constant in the existing MR models, while the situations that contact varies a lot after FGP are ignored. Therefore, a novel model is proposed in this paper to take those situations into consideration. Firstly, the nonconstant-contact situation is introduced. Then an equivalent method is developed to convert the nonconstant-contact grinding process into the accumulation of several quasi-constant-contact grinding processes. Based on the equivalent method, a MR model is established, and the procedure to obtain the model parameters by the finite element analysis (FEA) is introduced. In the end, the equivalent method and the MR model are tested by a series experiments of different process parameters. Results show that the proposed MR model can predict the material removal effectively for the nonconstant-contact situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.