Objective. To investigate the anthropometric indicators that can effectively predict the nonalcoholic fatty liver disease (NAFLD). Methods. The height, body weight, waist and hip circumference were measured, and body mass index (BMI), waist-to-height (WHtR) and waist-to-hip ratio (WHR) were calculated. M-H chi square test, logistic regression analysis, and receiver-operating characteristic (ROC) curve were employed for the analysis of risk factors. Patients or Materials. 490 patients were recruited, of whom 250 were diagnosed as NAFLD and 240 as non-NAFLD (control group). Results. Compared with the control group, the BMI, WHR, and WHtR were significantly higher in patients with NAFLD. Logistic regression analysis showed that BMI and WHR were effective prognostic factors of NAFLD. In addition, WHR plays a more important role in prediction of NAFLD by the area under curve. Conclusion. WHR is closely related to the occurrence of NAFLD. We assume that WHR is beneficial for the diagnosis NAFLD.
Extracellular ATP is a widespread cell-to-cell signaling molecule in the brain, where it functions as a neuromodulator by activating glia and neurons. Although ATP exerts multiple effects on synaptic plasticity and neuro-glia interactions, as well as in mood disorders, the source and regulation of ATP release remain to be elaborated. Here, we define Calhm2 as an ATP-releasing channel protein based on in vitro and in vivo models. Conventional knockout and conditional astrocyte knockout of Calhm2 both lead to significantly reduced ATP concentrations, loss of hippocampal spine number, neural dysfunction and depression-like behaviors in mice, which can be significantly rescued by ATP replenishment. Our findings identify Calhm2 as a critical ATP-releasing channel that modulates neural activity and as a potential risk factor of depression.
UTX is implicated in embryonic development and lineage specification. However, how this X-linked histone demethylase contributes to the occurrence and progression of breast cancer remains to be clarified. Here we report that UTX is physically associated with estrogen receptor (ER) and functions in ER-regulated transcription. We showed that UTX coordinates with JHDM1D and CBP to direct H3K27 methylation-acetylation transition and to create a permissive chromatin state on ER targets. Genome-wide analysis of the transcriptional targets of UTX by ChIP-seq identified a set of genes such as chemokine receptor CXCR4 that are intimately involved in breast cancer tumorigenesis and metastasis. We demonstrated that UTX promotes the proliferation and migration of ER breast cancer cells. Interestingly, UTX itself is transactivated by ER, forming a feed-forward loop in the regulation of hormone response. Indeed, UTX is upregulated during ER breast cancer progression, and the expression level of UTX is positively correlated with that of CXCR4 and negatively correlated with the overall survival of ER breast cancer patients. Our study identified a feed-forward loop between UTX and ER in the regulation of hormonally responsive breast carcinogenesis, supporting the pursuit of UTX as an emerging therapeutic target for the intervention of certain ER breast cancer with specific epigenetic vulnerability.
These findings indicate that aggressive periodontitis is associated with elevated levels of plasma calprotectin and that gene polymorphisms of S100A8 may influence the susceptibility and severity of aggressive periodontitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.