Adaptability to various driving conditions (TCs) is one of the essential indicators to assess the optimality of power management strategies (PMSs) of plug-in hybrid electric vehicles (PHEVs). In this study, a novel optimal PMS with the improved adaptability to TCs is proposed for PHEVs to achieve the energy-efficient control in momentary scenarios by virtue of advanced internet of vehicles (IoVs), thus contributing to remarkable promotion in fuel economy of PHEV. Firstly, the optimal control rules in the novel PMS, corresponding to diverse driving conditions, are optimized offline by the chaotic particle swarm optimization with sequential quadratic programming (CPSO-SQP), which can effectively endow the global optimization knowledge into the rule inspired method. Then, an online TC identification (TCI) method is designed by cooperatively exploiting multi-dimensional Gaussian distribution (MGD) and random forest (RF), where the MGD based analysis on the macrocosmic state of traffic contributes to valuable inputs for the RF based TC classification, and additionally the super regression ability of RF further improves the identification accuracy. Finally, the numerical simulation validations showcase that the novel optimal PMS can reasonably and instantly manage the power flow within power sources of PHEV under different TCs, manifesting its anticipated preferable controlling performance.
V 2 AlC is a typical ternary intermetallic compound and a precursor to synthesis 2D-MXenes V 2 C. This work used cheap metal oxides and carbon as simple starting materials to fabricate MAX phases carbide V 2 AlC by molten salt electrolysis, and the obtained product could be converted into 2D V 2 C by a chemical etching process easily. The obtained ultrafine V 2 AlC possess high purity and homogeneity, and the 2D V 2 C from the chemical etching presented a unique layered Nano-sheets structure. TEM and X-ray photoelectron spectroscopy were combined to analysis the micromorphology and the chemical bonding states. And the reaction mechanism has been investigated to explore the facile synthetic method of V 2 AlC and 2D V 2 C.
In this paper, a novel energy management strategy with the improved adaptability to various conditions for plug‐in hybrid electric vehicle (PHEV) is proposed. The control parameters, derived from the benchmark test, are optimized offline for different driving conditions. The optimized parameters are implemented according to different driving behaviours identified online. The offline and online cooperation improves performance of energy management strategy in different driving conditions. Three main efforts have been made: Firstly, the valuable features that describe different driving conditions are extracted by random forest (RF) and the features are used for determining driving condition categories, utilized for online driving condition identification by support vector machine (SVM). Secondly, the control thresholds in the developed control strategy are optimized by whale optimization algorithm (WOA) under different driving conditions. The optimal control thresholds for different driving conditions will be called online after certain traffic condition is categorized. At last, simulation‐based evaluation is performed, validating the enhanced performance of the proposed methods in energy‐saving in different driving conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.