In AI-assisted decision-making, it is crucial but challenging for humans to achieve appropriate reliance on AI. This paper approaches this problem from a human-centered perspective, "human selfconfidence calibration". We begin by proposing an analytical framework to highlight the importance of calibrated human self-confidence. In our first study, we explore the relationship between human selfconfidence appropriateness and reliance appropriateness. Then in our second study, We propose three calibration mechanisms and compare their effects on humans' self-confidence and user experience. Subsequently, our third study investigates the effects of self-confidence calibration on AI-assisted decision-making. Results show that calibrating human self-confidence enhances human-AI team performance and encourages more rational reliance on AI (in some aspects) compared to uncalibrated baselines. Finally, we discuss our main findings and provide implications for designing future AI-assisted decision-making interfaces.
CCS CONCEPTS• Human-centered computing → Empirical studies in HCI.
Misinformation on social media has become a serious concern. Marking news stories with credibility indicators, possibly generated by an AI model, is one way to help people combat misinformation. In this paper, we report the results of two randomized experiments that aim to understand the effects of AI-based credibility indicators on people's perceptions of and engagement with the news, when people are under social influence such that their judgement of the news is influenced by other people. We find that the presence of AI-based credibility indicators nudges people into aligning their belief in the veracity of news with the AI model's prediction regardless of its correctness, thereby changing people's accuracy in detecting misinformation. However, AI-based credibility indicators show limited impacts on influencing people's engagement with either real news or fake news when social influence exists. Finally, it is shown that when social influence is present, the effects of AI-based credibility indicators on the detection and spread of misinformation are larger as compared to when social influence is absent, when these indicators are provided to people before they form their own judgements about the news. We conclude by providing implications for better utilizing AI to fight misinformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.