IntroductionMicroglia are tissue macrophages of the central nervous system that monitor brain homeostasis and react upon neuronal damage and stress. Aging and neurodegeneration induce a hypersensitive, pro-inflammatory phenotype, referred to as primed microglia. To determine the gene expression signature of priming, the transcriptomes of microglia in aging, Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) mouse models were compared using Weighted Gene Co-expression Network Analysis (WGCNA).ResultsA highly consistent consensus transcriptional profile of up-regulated genes was identified, which prominently differed from the acute inflammatory gene network induced by lipopolysaccharide (LPS). Where the acute inflammatory network was significantly enriched for NF-κB signaling, the primed microglia profile contained key features related to phagosome, lysosome, antigen presentation, and AD signaling. In addition, specific signatures for aging, AD, and ALS were identified.ConclusionMicroglia priming induces a highly conserved transcriptional signature with aging- and disease-specific aspects.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-015-0203-5) contains supplementary material, which is available to authorized users.
Disease Research (CNDR). Written informed consent was obtained from all subjects. The cases used in this study are summarized in Supplemental Table 3. RNA-seq data. All original RNA-seq data were previously deposited in the NCBI's Gene Expression Omnibus database (GEO GSE101689).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.