At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic helix-loop-helix transcription factor, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), is also required for hypocotyl elongation in response to high temperature. PIF4 also acts redundantly with its homolog, PIF5, to regulate diurnal growth rhythms and elongation responses to the threat of vegetative shade. PIF4 activity is reportedly limited in part by binding to both the basic helix-loop-helix protein LONG HYPO-COTYL IN FAR RED 1 and the DELLA family of growth-repressing proteins. Despite the importance of PIF4 in integrating multiple environmental signals, the mechanisms by which PIF4 controls growth are unknown. Here we demonstrate that PIF4 regulates levels of auxin and the expression of key auxin biosynthesis genes at high temperature. We also identify a family of SMALL AUXIN UP RNA (SAUR) genes that are expressed at high temperature in a PIF4-dependent manner and promote elongation growth. Taken together, our results demonstrate direct molecular links among PIF4, auxin, and elongation growth at high temperature.indole-3-acetic acid | TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 | CYP79B2 T he hormone indole-3-acetic acid (IAA, or auxin) is fundamental to plant growth and development, controlling many key aspects of shoot and root growth (1). When plants are grown at elevated temperatures, IAA levels increase, resulting in increased hypocotyl elongation (2, 3). Although genetic studies in Arabidopsis have demonstrated that this growth response is dependent on auxin biosynthesis, signaling, and transport pathways, precisely how high temperature promotes an increase in auxin levels has not been established. There are multiple pathways for the de novo synthesis of IAA, the major naturally occurring plant auxin, which are often classified according to whether or not they require the precursor tryptophan (4). Although progress has been made in elucidating some of the enzymes involved in IAA biosynthesis, our understanding of these pathways and their regulation remains rudimentary.In addition to auxin, the basic helix-loop-helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) is also required for temperature-dependent hypocotyl elongation (5, 6). PIF4 has emerged as a key regulator of elongation in response to external signals, such as temperature and light, as well as internal signals, including gibberellin and the circadian clock (7-12). In the present work, we investigated potential mechanistic links between PIF4 and IAA in the control of temperatureinduced hypocotyl elongation. We found that PIF4 promotes IAA biosynthesis, possibly by activating the expression of key IAA biosynthetic genes in a temperature-dependent manner. Results and DiscussionGiven that s...
PURPOSE To assess the benefits of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors as neoadjuvant/adjuvant therapies in locally advanced EGFR mutation-positive non–small-cell lung cancer. PATIENTS AND METHODS This was a multicenter (17 centers in China), open-label, phase II, randomized controlled trial of erlotinib versus gemcitabine plus cisplatin (GC chemotherapy) as neoadjuvant/adjuvant therapy in patients with stage IIIA-N2 non–small-cell lung cancer with EGFR mutations in exon 19 or 21 (EMERGING). Patients received erlotinib 150 mg/d (neoadjuvant therapy, 42 days; adjuvant therapy, up to 12 months) or gemcitabine 1,250 mg/m2 plus cisplatin 75 mg/m2 (neoadjuvant therapy, two cycles; adjuvant therapy, up to two cycles). Assessments were performed at 6 weeks and every 3 months postsurgery. The primary end point was objective response rate (ORR) by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1; secondary end points were pathologic complete response, progression-free survival (PFS), overall survival, safety, and tolerability. RESULTS Of 386 patients screened, 72 were randomly assigned to treatment (intention-to-treat population), and 71 were included in the safety analysis (one patient withdrew before treatment). The ORR for neoadjuvant erlotinib versus GC chemotherapy was 54.1% versus 34.3% (odds ratio, 2.26; 95% CI, 0.87 to 5.84; P = .092). No pathologic complete response was identified in either arm. Three (9.7%) of 31 patients and zero of 23 patients in the erlotinib and GC chemotherapy arms, respectively, had a major pathologic response. Median PFS was significantly longer with erlotinib (21.5 months) versus GC chemotherapy (11.4 months; hazard ratio, 0.39; 95% CI, 0.23 to 0.67; P < .001). Observed adverse events reflected those most commonly seen with the two treatments. CONCLUSION The primary end point of ORR with 42 days of neoadjuvant erlotinib was not met, but the secondary end point PFS was significantly improved.
SummaryChloroplast development requires coordinated expression of both nuclear-and chloroplast-encoded genes. To better understand the roles played by nuclear-encoded chloroplast proteins in chloroplast biogenesis, we isolated an Arabidopsis mutant, egy1-1, which has a dual phenotype, reduced chlorophyll accumulation and abnormal hypocotyl gravicurvature. Subsequent map-based cloning and DNA sequencing of the mutant gene revealed a 10-bp deletion in an EGY1 gene, which encodes a 59-kDa metalloprotease that contains eight transmembrane domains at its C-terminus, and carries out b-casein degradation in an ATP-independent manner. EGY1 protein accumulation varies between tissue types, being most prominent in leaf and stem tissues, and is responsive to light and ethylene. EGY1-GFP hybrid proteins are localized in the chloroplast. egy1 mutant chloroplasts had reduced granal thylakoids and poorly developed lamellae networks. Furthermore, the accumulation of chlorophyll a/b binding proteins of the light-harvesting complexes I and II (Lhca and Lhcb) are significantly decreased in three separate loss-of-function egy1 mutants. Taken together, these results suggest that EGY1 metalloprotease is required for chloroplast development and, hence, a defective EGY1 gene has pleiotropic effects both on chloroplast development and on ethylene-dependent gravitropism of light-grown hypocotyls.
SummaryGlioblastoma (GBM)-derived tumorigenic stem-like cells (GSCs) may play a key role in therapy resistance. Previously, we reported that the mitotic kinase MELK binds and phosphorylates the oncogenic transcription factor FOXM1 in GSCs. Here, we demonstrate that the catalytic subunit of Polycomb repressive complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs. Clinically, EZH2 and MELK are coexpressed in GBM and significantly induced in postirradiation recurrent tumors whose expression is inversely correlated with patient prognosis. Through a gain-and loss-of-function study, we show that MELK or FOXM1 contributes to GSC radioresistance by regulation of EZH2. We further demonstrate that the MELK-EZH2 axis is evolutionarily conserved in Caenorhabditis elegans. Collectively, these data suggest that the MELK-FOXM1-EZH2 signaling axis is essential for GSC radioresistance and therefore raise the possibility that MELK-FOXM1-driven EZH2 signaling can serve as a therapeutic target in irradiation-resistant GBM tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.