Person re-identification (re-id) is to match people across disjoint camera views in a multi-camera system, and re-id has been an important technology applied in smart city in recent years. However, the majority of existing person re-id methods are not designed for processing sequential data in an online way. This ignores the real-world scenario that person images detected from multi-cameras system are coming sequentially. While there is a few work on discussing online re-id, most of them require considerable storage of all passed data samples that have been ever observed, and this could be unrealistic for processing data from a large camera network. In this work, we present an onepass person re-id model that adapts the re-id model based on each newly observed data and no passed data are directly used for each update. More specifically, we develop an Sketch online Discriminant Analysis (SoDA) by embedding sketch processing into Fisher discriminant analysis (FDA). SoDA can efficiently keep the main data variations of all passed samples in a low rank matrix when processing sequential data samples, and estimate the approximate within-class variance (i.e. within-class covariance matrix) from the sketch data information. We provide theoretical analysis on the effect of the estimated approximate within-class covariance matrix. In particular, we derive upper and lower bounds on the Fisher discriminant score (i.e. the quotient between between-class variation and within-class variation after feature transformation) in order to investigate how the optimal feature transformation learned by SoDA sequentially approximates the offline FDA that is learned on all observed data. Extensive experimental results have shown the effectiveness of our SoDA and empirically support our theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.