We develop a new edge detection algorithm that addresses two important issues in this long-standing vision problem: (1) holistic image training and prediction; and (2) multi-scale and multi-level feature learning. Our proposed method, holistically-nested edge detection (HED), performs image-to-image prediction by means of a deep learning model that leverages fully convolutional neural networks and deeply-supervised nets. HED automatically learns rich hierarchical representations (guided by deep supervision on side responses) that are important in order to resolve the challenging ambiguity in edge and object boundary detection. We significantly advance the state-of-the-art on the BSD500 dataset (ODS F-score of .782) and the NYU Depth dataset (ODS F-score of .746), and do so with an improved speed (0.4s per image) that is orders of magnitude faster than some recent CNN-based edge detection algorithms.
Despite the steady progress in video analysis led by the adoption of convolutional neural networks (CNNs), the relative improvement has been less drastic as that in 2D static image classification. Three main challenges exist including spatial (image) feature representation, temporal information representation, and model/computation complexity. It was recently shown by Carreira and Zisserman that 3D CNNs, inflated from 2D networks and pretrained on Ima-geNet, could be a promising way for spatial and temporal representation learning. However, as for model/computation complexity, 3D CNNs are much more expensive than 2D CNNs and prone to overfit. We seek a balance between speed and accuracy by building an effective and efficient video classification system through systematic exploration of critical network design choices. In particular, we show that it is possible to replace many of the 3D convolutions by low-cost 2D convolutions. Rather surprisingly, best result (in both speed and accuracy) is achieved when replacing the 3D convolutions at the bottom of the network, suggesting that temporal representation learning on high-level "semantic" features is more useful. Our conclusion generalizes to datasets with very different properties. When combined with several other cost-effective designs including separable spatial/temporal convolution and feature gating, our system results in an effective video classification system that that produces very competitive results on several action classification benchmarks (Kinetics, Something-something, UCF101 and HMDB), as well as two action detection (localization) benchmarks (JHMDB and UCF101-24).
We study the performance of 'integral channel features' for image classification tasks, focusing in particular on pedestrian detection. The general idea behind integral channel features is that multiple registered image channels are computed using linear and non-linear transformations of the input image, and then features such as local sums, histograms, and Haar features and their various generalizations are efficiently computed using integral images. Such features have been used in recent literature for a variety of tasks -indeed, variations appear to have been invented independently multiple times. Although integral channel features have proven effective, little effort has been devoted to analyzing or optimizing the features themselves. In this work we present a unified view of the relevant work in this area and perform a detailed experimental evaluation. We demonstrate that when designed properly, integral channel features not only outperform other features including histogram of oriented gradient (HOG), they also (1) naturally integrate heterogeneous sources of information, (2) have few parameters and are insensitive to exact parameter settings, (3) allow for more accurate spatial localization during detection, and (4) result in fast detectors when coupled with cascade classifiers.
Automatic whole-brain extraction from magnetic resonance images (MRI), also known as skull stripping, is a key component in most neuroimage pipelines. As the first element in the chain, its robustness is critical for the overall performance of the system. Many skull stripping methods have been proposed, but the problem is not considered to be completely solved yet. Many systems in the literature have good performance on certain datasets (mostly the datasets they were trained/tuned on), but fail to produce satisfactory results when the acquisition conditions or study populations are different. In this paper we introduce a robust, learning-based brain extraction system (ROBEX). The method combines a discriminative and a generative model to achieve the final result. The discriminative model is a Random Forest classifier trained to detect the brain boundary; the generative model is a point distribution model that ensures that the result is plausible. When a new image is presented to the system, the generative model is explored to find the contour with highest likelihood according to the discriminative model. Because the target shape is in general not perfectly represented by the generative model, the contour is refined using graph cuts to obtain the final segmentation. Both models were trained using 92 scans from a proprietary dataset but they achieve a high degree of robustness on a variety of other datasets. ROBEX was compared with six other popular, publicly available methods (BET, BSE, FreeSurfer, AFNI, BridgeBurner, and GCUT) on three publicly available datasets (IBSR, LPBA40, and OASIS, 137 scans in total) that include a wide range of acquisition hardware and a highly variable population (different age groups, healthy/diseased). The results show that ROBEX provides significantly improved performance measures for almost every method/dataset combination.
In this paper we present a Bayesian framework for parsing images into their constituent visual patterns. The parsing algorithm optimizes the posterior probability and outputs a scene representation in a "parsing graph", in a spirit similar to parsing sentences in speech and natural language. The algorithm constructs the parsing graph and re-configures it dynamically using a set of reversible Markov chain jumps. This computational framework integrates two popular inference approaches -generative (top-down) methods and discriminative (bottom-up) methods. The former formulates the posterior probability in terms of generative models for images defined by likelihood functions and priors. The latter computes discriminative probabilities based on a sequence (cascade) of bottom-up tests/filters. In our Markov chain design, the posterior probability, defined by the generative models, is the invariant (target) probability for the Markov chain, and the discriminative probabilities are used to construct proposal probabilities to drive the Markov chain. Intuitively, the bottom-up discriminative probabilities activate top-down generative models. In this paper, we focus on two types of visual patterns -generic visual patterns, such as texture and shading, and object patterns including human faces and text. These types of patterns compete and cooperate to explain the image and so image parsing unifies image segmentation, object detection, and recognition (if we use generic visual patterns only then image parsing will correspond to image segmentation [46].). We illustrate our algorithm on natural images of complex city scenes and show examples where image segmentation can be improved by allowing object specific knowledge to disambiguate low-level segmentation cues, and conversely object detection can be improved by using generic visual patterns to explain away shadows and occlusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.