At the interface of van der Waals heterostructures, the crystal symmetry and the electronic structure can be reconstructed, giving rise to physical properties superior to or absent in parent materials. Here by studying a Bernal bilayer graphene moiré superlattice encapsulated by 30°-twisted boron nitride flakes, we report an unprecedented ferroelectric polarization with the areal charge density up to 1013 cm−2, which is far beyond the capacity of a moiré band. The translated polarization ~5 pC m−1 is among the highest interfacial ferroelectrics engineered by artificially stacking van der Waals crystals. The gate-specific ferroelectricity and co-occurring anomalous screening are further visualized via Landau levels, and remain robust for Fermi surfaces outside moiré bands, confirming their independence on correlated electrons. We also find that the gate-specific resistance hysteresis loops could be turned off by the other gate, providing an additional control knob. Furthermore, the ferroelectric switching can be applied to intrinsic properties such as topological valley current. Overall, the gate-specific ferroelectricity with strongly enhanced charge polarization may encourage more explorations to optimize and enrich this novel class of ferroelectricity, and promote device applications for ferroelectric switching of various quantum phenomena.
Rhombohedral trilayer graphene has recently emerged as a natural flat-band platform for studying interaction-driven symmetry-breaking phases. The displacement field (D) can further flatten the band to enhance the density of states, thereby controlling the electronic correlation that tips the energy balance between spin and valley degrees of freedom. To characterize the energy competition, chemical potential measurementa direct thermodynamic probe of Fermi surfacesis highly demanding to be conducted under a constant D. In this work, we characterize D-dependent isospin flavor polarization, where electronic states with isospin degeneracies of one and two can be identified. We also developed a method to measure the chemical potential at a fixed D, allowing for the extraction of energy variation during phase transitions. Furthermore, symmetry breaking could also be invoked in Landau levels, manifesting as quantum Hall ferromagnetism. Our work opens more opportunities for the thermodynamic characterization of displacement-field tuned van der Waals heterostructures.
In transition metal dichalcogenides (TMDs), Ising superconductivity with an antisymmetric spin texture on the Fermi surface has attracted wide interest due to the exotic pairing and topological properties. However, it is not clear whether the Q valley with a giant spin splitting is involved in the superconductivity of heavily doped semiconducting 2H-TMDs.Here by taking advantage of a high-quality monolayer WS 2 on hexagonal boron nitride flakes, we report an ionic-gating induced superconducting dome with a record high critical temperature of ∼6 K, accompanied by an emergent nonlinear Hall effect. The nonlinearity indicates the development of an additional high-mobility channel, which (corroborated by first principle calculations) can be ascribed to the population of Q valleys. Thus, multivalley population at K and Q is suggested to be a prerequisite for developing superconductivity. The involvement of Q valleys also provides insights to the spin textured Fermi surface of Ising superconductivity in the large family of transition metal dichalcogenides.
Moiré superlattices in van der Waals heterostructures have recently attracted enormous interests, due to the highly controllable electronic correlation that gives rise to superconductivity, ferromagnetism and nontrivial topological properties. To gain a deep understanding of such exotic properties, it is essential to clarify the broken symmetry between spin and valley flavors which universally exists in these ground states. Here in a rhombohedral trilayer graphene crystallographically aligned with a hexagonal boron nitride, we report various kinds of symmetrybreaking transition tuned by displacement fields (D) and magnetic fields: (1) While it’s well known that a finite D can enhance correlation to result in correlated insulators at fractional fillings of a flat band, we find the correlation gap emerges before the flavor is fully filled at a positive D, but the sequence is reversed at a negative D. (2) Around zero D, electronic correlation can be invoked by narrow Landau levels, leading to quantum Hall ferromagnetism that lifts all the degeneracies including not only spin and valley but also orbital degrees of freedom. Our result unveils the complication of transitions between symmetry-breaking phases, shedding light on the mechanisms of various exotic phenomena in strongly correlated systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.