Gliomas, the most common primary brain tumors, have low survival rates and poorly defined molecular mechanisms to target for treatment. Serine/arginine SR protein kinases 1 (SRPK1) can highly and specifically phosphorylate the SR protein found in many tumors, which can influence cell proliferation and angiogenesis. However, the roles and regulatory mechanisms of SRPK1 in gliomas are not understood. The aim of this study was to determine the functions and regulation of SRPK1 in gliomas. We found that SRPK1 inhibition induces early apoptosis and significantly inhibits xenograft tumor growth. Our results indicate that SRPK1 affects Akt and eIF4E phosphorylation, Bax and Bcl-2 activation, and HIF-1 and VEGF production in glioma cells. Moreover, transfection of SRPK1 siRNA strongly reduced cell invasion and migration by regulating the expression of MMP2 and MMP9 and significantly decreased the volume of tumors and angiogenesis. We show here that a strong link exists among SRPK1, Akt, eIF4E, HIF-1, and VEGF activity that is functionally involved in apoptosis, metastasis, and angiogenesis of gliomas under normoxic conditions. Thus, SRPK1 may be a potential anticancer target to inhibit glioma progression.
Glioma has become a significant global health problem with substantial morbidity and mortality, underscoring the importance of elucidating its underlying molecular mechanisms. Recent studies have identified mir-218 as an anti-oncogene; however, the specific functions of mir-218-1 and mir-218-2 remain unknown, especially the latter. The objective of this study was to further investigate the role of mir-218-2 in glioma. Our results indicated that mir-218-2 is highly overexpressed in glioma. Furthermore, we showed that mir-218-2 is positively correlated with the growth, invasion, migration, and drug susceptibility (to β-lapachone) of glioma cells. In vitro, the overexpression of mir-218-2 promoted glioma cell proliferation, invasion, and migration. In addition, the overexpression of mir-218-2 in vivo was found to increase glioma tumor growth. Accordingly, the inhibition of mir-218-2 resulted in the opposite effects. Cell division cycle 27 (CDC27), the downstream target of mir-218-2, is involved in the regulation of glioma cells. Our results indicate that the overexpression of CDC27 counteracted the function of mir-218-2 in glioma cells. These novel findings provide new insight in the application of mir-218-2 as a potential glioma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.