High-speed digital microsystems has emerged as one of the most important solutions for improving system performance, bandwidth, and power consumption. Based on mature micro-system processing technology, a material extraction approach for silicon interposer applied for high-speed digital microsystems was presented in order to obtain frequency-dependent precise material parameters. By combining microwave theory and mathematical model of iterative algorithm, the dielectric constant (Dk) and the dissipation factor (Df) of polyimide dielectric layer is acquired, which minimizes testing costs and streamlines testing process. The method is based on two-port transmission/reflection measurements. Vector Network Analyzer (VNA) is used to extract the scattering parameters with an extraction range of 1 MHz to 10 GHz. The algorithm is programmed using MATLAB. The observed Dk values at 2 GHz, 6 GHz, 8 GHz, and 10 GHz are, respectively, 3.22, 3.04, 2.96, 3.03, and 2.91, while the corresponding Df values are 0.021, 0.025, 0.026, 0.026, and 0.024. Finally, the complex permittivity derived is simulated and analyzed using Ansys HFSS. The results verify the validity of the theoretical method and proves that the values of the complex permittivity obtained by the method in this paper are reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.