A novel fluorescent probe TSOC (thiazole salicylaldehyde oxazole chlorinated) was synthesized based on benzothiazole conjugated olefinic bond with salicylicaldehyde unit as fluorophore and a phenyl oxazole unit as bonding unit. The probe could reversibly detect of Cu2+ and S2− over other common ions with longer emission and large stokes shift in an aqueous solution at pH 7.3 (DMSO-Hepes, v/v, 5:1, 10 mM). The bonding mechanism was supported through the titration experiment of fluorescence and absorption spectroscopy, 1H-NMR titration, HR-MS and DFT calculations. Moreover, the probe further exhibited good cell permeability and were successfully used to visualize Cu2+ and S2− in living cells.
Thermoelectric materials have gained wide attention to realize multilevel efficient energy management to alleviate the increasingly severe energy crisis. Oxide ceramics were well-explored as potential thermoelectric candidates because of their outstanding merits, including abundance, eco-friendliness, high-temperature stability, and chemical stability. In this work, we aim to provide a comprehensive summary of the diversified state-of-the-art oxide ceramics and establish the links between composition designing, preparation process, structural characteristics, and properties to summarize the underlying chemistry and physics mechanism of band engineering, doping, composited with the second phase, defects engineering, and entropy engineering. Furthermore, advanced device design and applications such as thermoelectric modules, miniature generators, sensors, and coolers were reviewed. Ultimately, the challenges and future perspective of oxides ceramics for the device design and thermoelectric applications in the development of energy harvesting technology have been prospected.
Plate-like single-crystalline BaBi4Ti4O[Formula: see text] particles were synthesized by the molten salt synthesis (MSS) method. The effects of sintering temperature, holding time, and NaCl–KCl molten salt content on the phase structure and morphology of plate-like BaBi4-Ti4O[Formula: see text] particles were investigated. The results show that plate-like BaBi4Ti4O[Formula: see text] particles can be synthesized when the sintering temperature is above 800[Formula: see text]C. The size of particles increases with increasing sintering temperature and molten salt content. Largely anisotropic plate-like BaBi4Ti4O[Formula: see text] particles with diameter [Formula: see text]10[Formula: see text]m and thickness of [Formula: see text]0.3 [Formula: see text]m can be obtained under the optimum process parameters. The crystal structure of BaBi4Ti4O[Formula: see text] was determined as A21am by TEM, which should be attributed to the Bi[Formula: see text] and Ba[Formula: see text] diffusing into [TiO6] octahedrons.
The electronic structure and thermoelectric properties of Bi3+-doped (Sr0.889-xLa0.111Bix)TiO2.963 were studied by the first principles method. Doping Bi3+ can increase the cell parameters, cell asymmetry and band gap. With increasing Bi3+ content, the asymmetry of DOS relative to the Fermi level increases, which results in an enhanced Seebeck coefficient, increasing carrier mobility and decreasing carrier concentration. An appropriate Bi3+-doping concentration (7.4–14.8%) can increase the lattice distortion and reduce the lattice thermal conductivity of the material. An appropriate Bi3+-doping concentration (7.4%) can effectively optimize the electrical transport performance and improve the thermoelectric properties of strontium titanate. The optimal Bi3+-doping concentration is 7.4%, and Sr0.815La0.111Bi0.074TiO2.963 obtains a maximum ZT of 0.48. This work shows the mechanism of Bi3+ doping in enhancing the thermoelectric properties of strontium titanate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.