Electromechanical braking system is the key way to improve the braking response ability of mine hoist. At present, the reliability research of electromechanical braking system is less. In order to further analyze and improve the reliability of electro-mechanical braking system, this paper adopts the reliability analysis method of electro-mechanical braking system based on fault tree and Bayesian network. Firstly, the fault tree of the electro-mechanical braking system is established, and then the fault tree is transformed into a Bayesian network, and the posterior probability, probability importance and key importance of each root node are inversely deduced. The diagnosis results show that the ball screw is the weakest link of the electro-mechanical braking system. Then the static simulation and fatigue life simulation of the ball screw are carried out for optimization, and the optimal model of the ball screw is determined. Finally, the electro-mechanical brake installed with the optimized ball screw is tested and analyzed. After the reliable performance test of the electro-mechanical brake, it is finally determined that the braking effect of the optimized electro-mechanical brake is stable.
The brake disc spindle of the electromechanical braking system will be accompanied by vibration unbalanced fault during the rotation operation, which will affect the braking performance of the brake system. In view of this phenomenon, based on the ensemble empirical mode decomposition algorithm and related energy operation theory, an offline purification program for the unbalanced axial trajectory of the spindle of electromechanical braking system are designed. Meanwhile, an online braking control feedback procedure for the axial trajectory are designed based on Cspace controller. Based on the designed program and braking theory, an experimental bench of the electro-mechanical braking system was set up, and experiments were conducted on the purification of the axial trajectory and the braking of the fault feedback respectively. The results show that the EEMD algorithm and the related energy operation theory can purify the unbalanced axial trajectory of the brake discs of the braking system and draw an ideal axial trajectory fault map; meanwhile, the experimental data of the fault feedback braking shows that the time required from the unbalanced fault monitoring to the completion of the braking process of the braking system is 1.278 s, which can effectively achieve the purpose of emergency braking in case of sudden failure. Through research, a new idea is provided for the development of electro-mechanical braking system fault detection and feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.