Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble k-nearest neighbor graphs- (K-NNG-) based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity.
While deep Convolutional Neural Networks (CNNs) have shown extraordinary capability of modelling specific noise and denoising, they still perform poorly on real-world noisy images. The main reason is that the real-world noise is more sophisticated and diverse. To tackle the issue of blind denoising, in this paper, we propose a novel pyramid real image denoising network (PRIDNet), which contains three stages. First, the noise estimation stage uses channel attention mechanism to recalibrate the channel importance of input noise. Second, at the multi-scale denoising stage, pyramid pooling is utilized to extract multi-scale features. Third, the stage of feature fusion adopts a kernel selecting operation to adaptively fuse multi-scale features. Experiments on two datasets of real noisy photographs demonstrate that our approach can achieve competitive performance in comparison with state-of-the-art denoisers in terms of both quantitative measure and visual perception quality. Code is available at https://github.com/491506870/PRIDNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.