GPC-3 and HCCR are useful tumor markers complementary to AFP for clinical diagnosis of HCC.
Hexokinase II is a key enzyme in the glycolytic pathway and possesses anti-apoptotic properties in tumor cells. The present study aimed to analyze the expression of hexokinase II and its clinical correlation with clinical factors in patients with hepatocellular carcinoma who treated surgically in China. Reverse transcription-polymerase chain reaction and real-time quantitative polymerase chain reaction were performed to determine hexokinase II mRNA expression in cancer tissues. Protein expression of hexokinase II was evaluated immunohistochemically. Correlation of hexokinase II expression with clinical data was analyzed by the χ(2) or Fisher exact test. Survival was estimated by the Kaplan-Meier method, compared by log-rank test and Cox regression model. A total of 97 specimens were analyzed. Fifty-four tumors showed strong expression of hexokinase II (55.67% expression rate). There were no statistical associations between hexokinase II expression and age, gender, tumor size, TNM stage, serum AFP level, and hepatitis virus infection. Kaplan-Meier curves showed an association between positive Hexokinase II expression and worse overall survival (P value = 0.043). Furthermore, patients expressing hexokinase II had a relatively higher risk for poor prognosis (hazard ratio = 2.049). These results suggest that hexokinase II is highly expressed in hepatocellular carcinoma and has prognostic significance. Hexokinase II represents a potential new therapeutic target in this malignancy.
Hepatitis B virus (HBV) causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). The molecular mechanisms underlying HBV persistence are not well understood. In this study, we found that HBV inhibited the chemotherapy drug etoposide-induced apoptosis of hepatoma cells. Further analysis revealed that HBV mRNAs possess a microRNA 15a/16 (miR-15a/16)-complementary site (HBV nucleotides [nt] 1362 to 1383) that acts as a sponge to bind and sequester endogenous miR-15a/16. Consequently, Bcl-2, known as the target of miR-15a/16, was upregulated in HBV-infected cells. The data from HBV-transgenic mice further confirmed that HBV transcripts cause the reduction of miR15a/16 and increase of Bcl-2. More importantly, we examined the levels of HBV transcripts and miR-15a/16 in HBV-infected HCC from patients and found that the amount of HBV mRNA and the level of miR-15a/16 were negatively correlated. Consistently, the level of Bcl-2 mRNA was upregulated in HBV-infected patients. In conclusion, we identified a novel HBV mRNAmiR-15a/16 -Bcl-2 regulatory pathway that is involved in inhibiting etoposide-induced apoptosis of hepatoma cells, which may contribute to facilitating chronic HBV infection and hepatoma development. There are approximately 350 million chronic hepatitis B virus (HBV) carriers worldwide, and chronic HBV infection is the major etiological factor in hepatocellular carcinoma (HCC) (1, 2). The relative risk for the development of HCC in chronic hepatitis B (CHB) patients is estimated to be 25 to 37 times higher than that in those without infection (1,3,4).HBV is an enveloped, partially double-stranded DNA virus with a genome size of 3.2 kb. The HBV genome contains four overlapping open reading frames (ORFs). The RNA transcripts are polyadenylated and capped and are named the pre-C/C or pregenomic RNA (pgRNA) and the pre-S, S, and X mRNAs. These mRNAs encode several viral proteins, including the polymerase, core, HBe, pre-S1, S2, S, and X proteins (5). HBV has been reported to play an important role in regulating apoptosis. For example, HBV core protein inhibits TRAIL-induced apoptosis of hepatocytes by blocking DR5 expression (6). HBx can bind to the C terminus of p53 and inhibit p53-mediated cellular processes, including transcriptional transactivation and apoptosis (7). But the HBx protein was also found to sensitize cells to apoptotic killing by tumor necrosis factor alpha (8) and to inhibit Fas-mediated apoptosis associated with upregulation of the SAPK/JNK pathway in Chang cells (9).MicroRNAs (miRNAs) are single-stranded noncoding RNAs which negatively regulate gene expression at the posttranscriptional level, primarily through base pairing to the 3=-untranslated region (UTR) of target mRNA (10). Growing evidence indicates that microRNAs control basic cell functions, ranging from proliferation to apoptosis, by direct targeting (11,12). For instance, miR-101 exerts a proapoptotic function by targeting Mcl-1 (13), and miR-29c inhibits ce...
Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors in the world. The only serological marker widely used for the diagnosis of HCC is alpha-fetoprotein (AFP). Despite that AFP is widely used for the diagnosis of HCC, it has a limit as a serological marker due to its low sensitivity and specificity. The human cervical cancer proto-oncogene 1 (HCCR-1) was previously reported as a new biomarker for HCC. To further evaluate the HCCR-1 as a biomarker for HCC, we conducted the prospective cohort study. We evaluated the significance of simultaneous measurement of 2 tumor markers in the diagnosis of HCC in China, Japan and Korea. Two markers for HCC, AFP and HCCR-1, were measured in the sera obtained from 1,338 patients at the time of initial diagnosis of HCC. Of the 1338 HCC patients, 616 (46%) and 686 (51.3%) were sero-positive for AFP and HCCR-1, respectively. The positive rate for HCC was increased up to 74.1% in combined use of AFP and HCCR-1. Many cases (54%) for AFP-negative HCC were positive for HCCR-1 and vice versa. More importantly, the diagnostic rate for small HCC (< 2 cm) was significantly improved in the combined analysis of AFP and HCCR-1 to 56.9% although it was only 40.1% and 23.4% in the single analysis of HCCR-1 and AFP, respectively. Our result suggests that the HCCR-1 could be an useful biomarker for HCC while the diagnostic rate could be significantly improved in the combined use of HCCR-1 and AFP.
Recent studies have indicated that telomerase activity promotes cancer invasion and metastasis, but the underlying mechanism remains unclear. Several studies have shown that expression of exogenous human telomerase reverse transcriptase (hTERT) can promote motility and invasiveness among telomerase-negative tumor cells, and inhibition of endogenous telomerase activity can reduce invasiveness in tumor cells. However, whether overexpression of hTERT can further enhance the motility and invasiveness of telomerase‑positive tumor cells has yet to be determined. In the present study, we showed that stable overexpression of hTERT can increase telomerase activity and telomere length, which significantly promotes the invasive and metastatic potential of telomerase‑positive HepG2 cells but does not affect cell proliferation. Further analysis suggested that enhanced invasiveness and metastasis may act through corresponding upregulation of mRNA and protein expression of matrix metalloproteinase 9 (MMP9) and Ras homolog gene family member C (RhoC). Our study indicated that exogenous expression of hTERT may promote invasiveness and metastasis through upregulation of MMP9 and RhoC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.