The Luojia1-01 satellite provides high-resolution, high-sensitivity nighttime light data at a resolution of 130 m. To effectively use the Luojia1-01 nighttime light data for global applications, the problems of relative and absolute positioning accuracy should be solved. This paper proposes a high accuracy regional geometric processing method of nighttime light imagery. We utilized a nighttime light image matching algorithm to obtain tie points, which are used in the planar block adjustment with ground control points. Then, orthorectification of all images is implemented. Finally, we obtain the nighttime light map of China by mosaicking all the nighttime light orthoimages. According to the experimental results for 275 Luojia1-01 images, the root mean square error of the tie points is 0.983 pixels and the root mean square error of independent checkpoints is 195.491 m (less than 1.5 pixels) after the planar block adjustment. The experimental results prove the validity and feasibility of the proposed method.
Pigeon-inspired optimization (PIO) is a swarm intelligence optimizer inspired by the homing behavior of pigeons. PIO consists of two optimization stages which employ the map and compass operator, and the landmark operator, respectively. In canonical PIO, these two operators treat every bird equally, which deviates from the fact that birds usually act heterogenous roles in nature. In this paper, we propose a new variant of PIO algorithm considering bird heterogeneity-HPIO. Both of the two operators are improved through dividing the birds into hub and non-hub roles. By dividing the birds into two groups, these two groups of birds are respectively assigned with different functions of "exploitation" and "exploration", so that they can closely interact with each other to locate the best promising solution. Extensive experimental studies illustrate that the bird heterogeneity produced by our algorithm can benefit the information exchange between birds so that the proposed PIO variant significantly outperforms the canonical PIO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.