Background
Marked changes in hemodynamics have been suggested to be a potential contributing factor to portal vein thrombosis (PVT) development. This study investigated the effect of portal hemodynamics based on the anatomical structure of the portal venous system on PVT development.
Methods
The morphological features of portal venous system in patients with PVT and those without PVT subgroups were compared. In addition, idealized PV models were established to numerically evaluate the effect of the variation in the angulation of superior mesenteric vein (SMV) and splenic vein (SV) on the hemodynamics of portal venous system.
Results
The angle α (angulation of SMV and SV) in patients with PVT was lower than that in patients without PVT (p < 0.0001), which was the only independent risk factor (odds ratio (OR), 0.90 (95% CI 0.84–0.95); p < 0.0001) for the presence of PVT. With the change in angle α, the flow pattern of blood flow changed greatly, especially the helical flow. When α = 80°, helical flow only appeared at the local PV near the intersection of SMV and SV. When α = 120°, most regions were occupied by the helical flow. In addition, the h2 gradually increased with increasing α, when α = 80°, h2 = 12.6 m/s2; when α = 120°, h2 = 29.3 m/s2.
Conclusions
The angulation of SV and SMV was closely associated with PVT development. Helical flow changed following the varying angulation of SV and SMV. Therefore, angulation of SV and SMV may help to identify high-risk cohorts for future PVT development earlier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.